Andrzej Sikorski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4422474/publications.pdf

Version: 2024-02-01

106	1,059	19	27
papers	citations	h-index	g-index
106	106	106	481
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Star Polymers vs. Dendrimers: Studies of the Synthesis Based on Computer Simulations. Polymers, 2022, 14, 2522.	2.0	8
2	Synthesis of Shape-Memory Polyurethanes: Combined Experimental and Simulation Studies. International Journal of Molecular Sciences, 2022, 23, 7064.	1.8	2
3	Dynamics of Opposing Polymer Brushes: A Computer Simulation Study. Polymers, 2021, 13, 2758.	2.0	10
4	The structure of polymer brushes near the transition from dilute to dense systems. A computer simulation study. Soft Matter, 2021, 17, 10516-10526.	1.2	1
5	Polymerization and Structure of Opposing Polymer Brushes Studied by Computer Simulations. Polymers, 2021, 13, 4294.	2.0	7
6	Adsorption of Linear and Cyclic Multiblock Copolymers from Selective Solvent. A Monte Carlo Study. Macromolecular Theory and Simulations, 2020, 29, 2000053.	0.6	3
7	The Concept of Cooperative Dynamics in Simulations of Soft Matter. Frontiers in Physics, 2020, 8, .	1.0	O
8	Motion in a crowded environment: the influence of obstacles' size and shape and model of transport. Journal of Molecular Modeling, 2019, 25, 84.	0.8	7
9	Molecular transport in systems containing binding obstacles. Soft Matter, 2019, 15, 10045-10054.	1.2	2
10	Collapse Transition of Cyclic Homopolymers and Block Copolymers. Macromolecular Theory and Simulations, 2018, 27, 1700089.	0.6	3
11	Universal scaling behavior of polymer chains at the percolation threshold. Soft Matter, 2018, 14, 8249-8252.	1.2	6
12	Comparison of different models of motion in a crowded environment: a Monte Carlo study. Soft Matter, 2017, 13, 1693-1701.	1.2	8
13	Monte Carlo studies of two-dimensional polymer–solvent systems. Journal of Molecular Modeling, 2017, 23, 63.	0.8	9
14	Diffusion of small particles in polymer films. Journal of Chemical Physics, 2017, 147, 014902.	1.2	7
15	Percolation in Twoâ€Dimensional Copolymerâ€Solvent Systems. Macromolecular Theory and Simulations, 2016, 25, 360-368.	0.6	4
16	Simulation of Molecular Transport in Systems Containing Mobile Obstacles. Journal of Physical Chemistry B, 2016, 120, 7529-7537.	1.2	6
17	Monte Carlo Simulation Studies of Regular and Irregular Dendritic Polymers. Macromolecular Theory and Simulations, 2015, 24, 477-489.	0.6	5
18	The structure of adsorbed cyclic chains. Journal of Molecular Modeling, 2015, 21, 56.	0.8	8

#	Article	IF	CITATIONS
19	Computer Simulation of Cyclic Polymers in Disordered Media. Computational Methods in Science and Technology, 2015, 21, 21-27.	0.3	4
20	Simulation of diffusion in a crowded environment. Soft Matter, 2014, 10, 3597.	1.2	22
21	Dynamic Properties of Linear and Cyclic Chains in Two Dimensions. Computer Simulation Studies. Macromolecules, 2014, 47, 4830-4839.	2.2	24
22	Monte Carlo Simulation Studies of the Size and Shape of Regular Three Generation Dendrimers. Macromolecular Theory and Simulations, 2014, 23, 288-299.	0.6	6
23	Monte carlo study of the percolation in two-dimensional polymer systems. Journal of Molecular Modeling, 2013, 19, 4251-4258.	0.8	18
24	Percolation in Twoâ€Dimensional Copolymer Systems. Macromolecular Theory and Simulations, 2013, 22, 238-245.	0.6	6
25	Percolation in Systems Containing Ordered Elongated Objects. Computational Methods in Science and Technology, 2013, 19, 115-121.	0.3	6
26	Note: Percolation in two-dimensional flexible chains systems. Journal of Chemical Physics, 2012, 136, 046101.	1.2	15
27	Percolation in two-dimensional systems containing cyclic chains. Soft Matter, 2012, 8, 973-979.	1.2	15
28	Properties of branched polymer chains adsorbed on a patterned surface. Polymer, 2012, 53, 1741-1746.	1.8	10
29	The Structure of Branched Polymer Chains Adsorbed on a Patterned Surface. Molecular Crystals and Liquid Crystals, 2011, 547, 108/[1798]-115/[1805].	0.4	0
30	The structure of percolated polymer systems: a computer simulation study. Journal of Molecular Modeling, 2011, 17, 2209-2215.	0.8	3
31	Adsorption of Copolymers on Solid Surfaces. Macromolecular Theory and Simulations, 2010, 19, 135-141.	0.6	6
32	Diffusion of polymer chains in porous media. A Monte Carlo study. Polymer, 2010, 51, 581-586.	1.8	12
33	Percolation in polymer-solvent systems: A Monte Carlo study. Journal of Chemical Physics, 2009, 131, 234901.	1.2	19
34	Adsorption of Homopolymer Chains on a Strip-Patterned Surface: A Monte Carlo Study. Catalysis Letters, 2009, 129, 130-134.	1.4	3
35	The structure of star-branched copolymers. A Monte Carlo study. Journal of Non-Crystalline Solids, 2009, 355, 1408-1413.	1.5	10
36	Dynamics of branched chain solutions in adsorbing slit. A Monte Carlo study. Rheologica Acta, 2008, 47, 571-577.	1.1	4

#	Article	IF	Citations
37	The Monte Carlo dynamics of polymer chains in sandwich brushes. Rheologica Acta, 2008, 47, 565-569.	1.1	2
38	Structure of polymer films in adsorbing slit: A computer simulation study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 244-248.	2.3	3
39	Properties of polymer sandwich brushes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 254-257.	2.3	4
40	Flow of polymer chains in thin confined layers. A computer Monte Carlo study. Computational Materials Science, 2008, 43, 127-131.	1.4	4
41	Properties of polymers adsorbed on solid surfaces. Computational Materials Science, 2008, 43, 132-136.	1.4	1
42	A simple model of stiff and flexible polymer chain adsorption: The influence of the internal chain architecture. Journal of Chemical Physics, 2008, 128, 154911.	1.2	31
43	Monte Carlo Simulations of Selfâ€Assembling Copolymer Brushes. Macromolecular Symposia, 2008, 267, 105-108.	0.4	0
44	Computer simulations of polymers in a confined environment. Journal of Physics Condensed Matter, 2007, 19, 205136.	0.7	2
45	Properties of polymer chains in confinement. Monte Carlo simulations. Journal of Non-Crystalline Solids, 2007, 353, 4596-4600.	1.5	3
46	Computer Simulation Study of Polymer Dynamics in Adsorbing Slit. International Journal of Polymer Analysis and Characterization, 2007, 12, 77-85.	0.9	0
47	Properties of Heteropolymer Linear Brushes. International Journal of Polymer Analysis and Characterization, 2007, 12, 57-64.	0.9	0
48	The Structure and Thermodynamics of a Heteropolymer Chain in Confinement – Computer Simulation Studies. Macromolecular Theory and Simulations, 2007, 16, 525-530.	0.6	0
49	On the dynamics of grafted branched polymers—a Monte Carlo simulation study. Rheologica Acta, 2007, 46, 677-683.	1.1	2
50	Computer simulation of polypeptides in a confinement. Journal of Molecular Modeling, 2007, 13, 327-333.	0.8	4
51	Properties of star-branched and linear chains in confined space: a computer simulation study. Journal of Mathematical Chemistry, 2006, 40, 295-303.	0.7	6
52	Folding Behavior of Polypeptides. A Monte Carlo Study of Simplified Models. Monatshefte Fþr Chemie, 2006, 137, 977-985.	0.9	1
53	The Structure of Star-Branched Chains in a Confined Space. Monatshefte FÃ1/4r Chemie, 2006, 137, 969-976.	0.9	4
54	The computer simulations of polymer dynamics in porous media. Rheologica Acta, 2006, 45, 583-589.	1.1	6

#	Article	IF	Citations
55	Motion of a branched polymer chain in confinement: A Monte Carlo study. Journal of Chemical Physics, 2006, 125, 104901.	1.2	4
56	Structure of Dense Polymer Systems Confined to a Slit. Acta Physica Polonica A, 2006, 109, 133-141.	0.2	2
57	Dynamics of polymer chains in confined space. A computer simulation study. Physica A: Statistical Mechanics and Its Applications, 2005, 357, 356-363.	1.2	32
58	Properties of star-branched and linear chains in confined space. A Monte-Carlo study. Journal of Molecular Modeling, 2005, 11, 335-340.	0.8	13
59	Computer simulation of polypeptide translocation through a nanopore. Journal of Molecular Modeling, 2005, 11, 379-384.	0.8	8
60	Star-branched polymers in an adsorbing slit: A Monte Carlo study. Journal of Chemical Physics, 2005, 123, 104905.	1.2	19
61	Properties of Confined Polymer Melts. Acta Physica Polonica A, 2005, 107, 443-450.	0.2	5
62	Properties of branched confined polymers. Journal of Chemical Physics, 2004, 120, 7206-7211.	1.2	28
63	Properties of Grafted Amphiphilic Chains. A Computer Simulation Studyâ€. Journal of Chemical Information and Computer Sciences, 2004, 44, 387-392.	2.8	13
64	Properties of Star-Branched Polymer Chains Near a Surface. Macromolecular Symposia, 2004, 217, 273-280.	0.4	3
65	Computer Simulations of Grafted Amphiphilic Polymer Chains. Macromolecular Symposia, 2004, 217, 281-288.	0.4	0
66	Dynamics of Adsorbed Star-Branched Polymer Chains: A Computer Simulation Study. Macromolecular Theory and Simulations, 2003, 12, 325-331.	0.6	4
67	Thermodynamical properties of simple models of protein-like heteropolymers. Biopolymers, 2003, 69, 391-398.	1.2	23
68	Properties of simple models of polymer networks. A Monte Carlo simulation. Macromolecular Symposia, 2003, 200, 249-254.	0.4	0
69	Dynamic properties of protein-like heteropolymers: a computer simulation study. Macromolecular Symposia, 2003, 203, 301-308.	0.4	0
70	A Monte Carlo simulation of a knotted linear chain system as an elementary network fragment. Macromolecular Symposia, 2003, 200, 243-248.	0.4	0
71	The Shape of Confined Polymer Chains. Acta Physica Polonica A, 2003, 103, 339-347.	0.2	3
72	Monte Carlo simulations of star-branched polymers confined between two walls. Journal of Chemical Physics, 2002, 116, 1731-1736.	1.2	33

#	Article	IF	CITATIONS
73	Dynamics of grafted star-branched polymers. A Monte Carlo study. Macromolecular Symposia, 2002, 181, 323-326.	0.4	5
74	Properties of Star-Branched Polymer Chains. Application of the Replica Exchange Monte Carlo Method. Macromolecules, 2002, 35, 7132-7137.	2.2	16
75	Simple models of polypeptides– conformational properties. A Monte Carlo study. Macromolecular Symposia, 2002, 181, 327-330.	0.4	1
76	Structure of Adsorbed Polymer Chains: A Monte Carlo Study. Macromolecular Theory and Simulations, 2002, 11, 359.	0.6	30
77	Formation of secondary structures in polypetides. A Monte Carlo simulation. Acta Poloniae Pharmaceutica, 2002, 59, 466-9.	0.3	O
78	Monte Carlo simulations of star-branched polymers in a network of obstacles. Macromolecular Symposia, 2001, 171, 63-68.	0.4	2
79	Computer Simulation of Adsorbed Polymer Chains with a Different Molecular Architecture. Macromolecular Theory and Simulations, 2001, 10, 38-45.	0.6	44
80	Monte Carlo Study of Chain Entanglements in Polymer Melt. Acta Physica Polonica A, 2001, 100, 477-484.	0.2	1
81	Monte carlo simulations of protein-like heteropolymers. Acta Biochimica Polonica, 2001, 48, 77-81.	0.3	0
82	Computer simulations of the properties of the ?2, ?2C, and ?2D de novo designed helical proteins. , 2000, 38, 17-28.		7
83	The effect of sequence patterns and local conformational preferences on the structure of collapsed polypeptide. Biopolymers, 2000, 54, 262-272.	1.2	21
84	Molten globule state in homopolymers: A Monte Carlo study. Macromolecular Theory and Simulations, 2000, 9, 564-569.	0.6	4
85	Computer simulations of the properties of the alpha2, alpha2C, and alpha2D de novo designed helical proteins. Proteins: Structure, Function and Bioinformatics, 2000, 38, 17-28.	1.5	1
86	Monte Carlo simulation of designed helical proteins. Acta Poloniae Pharmaceutica, 2000, 57 Suppl, 119-21.	0.3	0
87	Computer simulation of relaxation phenomena in star-branched polymers. Temperature dependence. Macromolecular Theory and Simulations, 1999, 8, 103-109.	0.6	5
88	New Multi-Bond Algorithm for Monte Carlo Simulation of Lattice Chains. Acta Physica Polonica A, 1999, 96, 691-697.	0.2	1
89	Shape of star-branched polymers at various solvent conditions. A computer simulation study. Journal of Chemical Physics, 1998, 109, 6169-6174.	1.2	18
90	Computer Simulations of De Novo Designed Helical Proteins. Biophysical Journal, 1998, 75, 92-105.	0.2	24

#	Article	IF	Citations
91	Temperature dependance of properties of star-branched polymers: A computer simulation study. Journal of Chemical Physics, 1998, 109, 2912-2920.	1.2	17
92	Motion of starâ€branched vs linear polymer: A Monte Carlo study. Journal of Chemical Physics, 1996, 104, 8703-8712.	1.2	20
93	Dynamics of star branched polymers in a matrix of linear chains â€" a Monte Carlo study. Macromolecular Theory and Simulations, 1994, 3, 715-729.	0.6	21
94	Monte carlo study of the dynamics of star-branched polymers. Die Makromolekulare Chemie Theory and Simulations, 1993, 2, 309-318.	1.0	46
95	Monte Carlo study of the collapse transition of flexible and semiflexible star-branched polymers. Polymer, 1993, 34, 1271-1281.	1.8	18
96	Collapse of Semiflexible Polymers in Two Dimensions. Monte Carlo Simulations. Acta Physica Polonica A, 1991, 79, 601-612.	0.2	3
97	Dynamic monte carlo simulations of globular protein folding. Journal of Molecular Biology, 1990, 215, 183-198.	2.0	24
98	Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. Journal of Molecular Biology, 1990, 212, 819-833.	2.0	47
99	Monte carlo studies on equilibrium globular protein folding. III. The four helix bundle. Biopolymers, 1989, 28, 1097-1113.	1.2	37
100	Monte Carlo simulation of equilibrium globular protein folding: alpha-helical bundles with long loops Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2668-2672.	3.3	43
101	Monte Carlo simulations of athermal rigid rod particles systems on the square lattice. Molecular Physics, 1985, 55, 363-371.	0.8	1
102	Monte carlo study of star-branched polymers on the tetrahedral lattice. II. Statistical thermodynamics of single macromolecules. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 97-106.	0.8	15
103	Monte carlo calculations of the ⊕point of star-branched macromolecules on tetrahedral lattice. Journal of Polymer Science, Polymer Letters Edition, 1982, 20, 177-180.	0.4	14
104	Monte Carlo study of star-branched polymers on the tetrahedral lattice. I. Conformation of the macromolecule. Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20, 3147-3154.	0.8	29
105	Computer Simulation of Polymer Chains in Confinement. Solid State Phenomena, 0, 138, 451-475.	0.3	2
106	Percolation in Polydisperse Polymer Systems: A Computer Simulation Study. Macromolecular Theory and Simulations, 0, , 2100094.	0.6	0