Dongping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4422288/publications.pdf

Version: 2024-02-01

687363 552781 27 681 13 26 citations h-index g-index papers 28 28 28 497 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon, 2016, 96, 459-473.	10.3	139
2	A fully coupled simulation of PAH and soot growth with a population balance model. Proceedings of the Combustion Institute, 2013, 34, 1827-1835.	3.9	81
3	Size-dependent melting of polycyclic aromatic hydrocarbon nano-clusters: A molecular dynamics study. Carbon, 2014, 67, 79-91.	10.3	65
4	Flame-formed carbon nanoparticles exhibit quantum dot behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12692-12697.	7.1	48
5	HOMO-LUMO energy splitting in polycyclic aromatic hydrocarbons and their derivatives. Proceedings of the Combustion Institute, 2019, 37, 953-959.	3.9	43
6	Solid–liquid transitions in homogenous ovalene, hexabenzocoronene and circumcoronene clusters: A molecular dynamics study. Combustion and Flame, 2015, 162, 486-495.	5.2	35
7	On the thermophoretic sampling and TEM-based characterisation of soot particles in flames. Carbon, 2021, 171, 711-722.	10.3	31
8	Phase change of polycyclic aromatic hydrocarbon clusters by mass addition. Carbon, 2014, 77, 25-35.	10.3	30
9	HOMO–LUMO Gaps of Homogeneous Polycyclic Aromatic Hydrocarbon Clusters. Journal of Physical Chemistry C, 2019, 123, 27785-27793.	3.1	29
10	Surface reactivity of polycyclic aromatic hydrocarbon clusters. Proceedings of the Combustion Institute, 2015, 35, 1811-1818.	3.9	23
11	On imaging nascent soot by transmission electron microscopy. Combustion and Flame, 2018, 198, 260-266.	5.2	22
12	Can nascent soot particles burn from the inside?. Carbon, 2016, 109, 608-615.	10.3	16
13	Reactive sites on the surface of polycyclic aromatic hydrocarbon clusters: A numerical study. Combustion and Flame, 2020, 211, 362-373.	5.2	14
14	Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2022, 13, 4052-4057.	4.6	14
15	A physiochemicalÂmodelÂforÂtheÂcombustionÂofÂaluminumÂnano-agglomerates in high-speed flows. Combustion and Flame, 2022, 237, 111739.	5.2	12
16	Cationâ^Ï€ Interactions between Flame Chemi-ions and Aromatic Compounds. Energy & Camp; Fuels, 2017, 31, 2345-2352.	5.1	11
17	HOMO–LUMO Gaps and Molecular Structures of Polycyclic Aromatic Hydrocarbons in Soot Formation. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	11
18	Shock-Induced Anisotropic Metal Combustion. Journal of Physical Chemistry C, 2020, 124, 13206-13214.	3.1	10

#	Article	IF	CITATIONS
19	Atomic insights into the sintering process of polycyclic aromatic hydrocarbon clusters. Proceedings of the Combustion Institute, 2021, 38, 1181-1188.	3.9	9
20	Exploring Chemical Reactions in Virtual Reality. Journal of Chemical Education, 2022, 99, 1635-1641.	2.3	9
21	Revealing Pressure Effects in the Anisotropic Combustion of Aluminum Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 28100-28107.	3.1	8
22	Revealing the optical properties of polycyclic aromatic hydrocarbon clusters with surface formyl groups. Proceedings of the Combustion Institute, 2021, 38, 1207-1215.	3.9	5
23	Molecular Dynamics Study on the Condensation of PAH Molecules on Quasi Soot Surfaces. Journal of Physical Chemistry A, 2022, 126, 630-639.	2.5	5
24	Hydrogen abstraction/addition reactions in soot surface growth. Physical Chemistry Chemical Physics, 2021, 23, 3071-3086.	2.8	4
25	On Modeling the Combustion of a Single Micron-Sized Aluminum Particle with the Effect of Oxide Cap. ACS Omega, 2021, 6, 34263-34275.	3.5	4
26	Anisotropic Combustion of Aluminum Nanoparticles in Carbon Dioxide and Water Flows. Journal of Thermal Science, 2022, 31, 867-881.	1.9	3
27	Surface Reactivity of Carbonaceous Nanoparticles: The Importance of Surface Pocket. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	O