David J Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/442226/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	<i>GIPR</i> gene expression in testis is mouse specific and can impact male mouse fertility. Andrology, 2022, , .	1.9	0
2	GIPR antagonist antibodies conjugated to GLP-1 peptide are bispecific molecules that decrease weight in obese mice and monkeys. Cell Reports Medicine, 2021, 2, 100263.	3.3	30
3	Glucose-Dependent Insulinotropic Polypeptide Receptor Therapies for the Treatment of Obesity, Do Agonists = Antagonists?. Endocrine Reviews, 2020, 41, 1-21.	8.9	55
4	Molecular mechanism of an antagonistic antibody against glucose-dependent insulinotropic polypeptide receptor. MAbs, 2020, 12, 1710047.	2.6	7
5	Chronic glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism desensitizes adipocyte GIPR activity mimicking functional GIPR antagonism. Nature Communications, 2020, 11, 4981.	5.8	57
6	Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Science Translational Medicine, 2018, 10, .	5.8	136
7	Haploinsufficiency of the Insulin Receptor in the Presence of a Splice-Site Mutation in <i>Ppp2r2a</i> Results in a Novel Digenic Mouse Model of Type 2 Diabetes. Diabetes, 2016, 65, 1434-1446.	0.3	18
8	Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 5. A Novel Aryl Sulfone Series, Optimization Through Conformational Analysis. Journal of Medicinal Chemistry, 2015, 58, 4462-4482.	2.9	23
9	Pharmacologic Effects of FGF21 Are Independent of the "Browning―of White Adipose Tissue. Cell Metabolism, 2015, 21, 731-738.	7.2	172
10	Discovery and Structure-Guided Optimization of Diarylmethanesulfonamide Disrupters of Glucokinase–Glucokinase Regulatory Protein (GK–GKRP) Binding: Strategic Use of a N → S (n _N → σ* _{S–X}) Interaction for Conformational Constraint. Journal of Medicinal Chemistry, 2015, 58, 9663-9679.	2.9	33
11	Molecular targeting of the GK-GKRP pathway in diabetes. Expert Opinion on Therapeutic Targets, 2015, 19, 129-139.	1.5	19
12	A Gain-of-Function Mutation in Adenylate Cyclase 3 Protects Mice from Diet-Induced Obesity. PLoS ONE, 2014, 9, e110226.	1.1	44
13	A mutation in Ampd2 is associated with nephrotic syndrome and hypercholesterolemia in mice. Lipids in Health and Disease, 2014, 13, 167.	1.2	14
14	Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 3. Structure–Activity Relationships within the Aryl Carbinol Region of the <i>N</i> -Arylsulfonamido- <i>N</i> ′-arylpiperazine Series. Journal of Medicinal Chemistry, 2014, 57, 3094-3116	2.9	46
15	Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 1. Discovery of a Novel Tool Compound for in Vivo Proof-of-Concept. Journal of Medicinal Chemistry, 2014, 57, 309-324.	2.9	29
16	Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 2. Leveraging Structure-Based Drug Design to Identify Analogues with Improved Pharmacokinetic Profiles. Journal of Medicinal Chemistry, 2014, 57, 325-338.	2.9	22
17	Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 4. Exploration of a Novel Binding Pocket. Journal of Medicinal Chemistry, 2014, 57, 5949-5964.	2.9	11
18	Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature, 2013, 504, 437-440.	13.7	94

DAVID J LLOYD

#	Article	IF	CITATIONS
19	FGF21 Promotes Metabolic Homeostasis via White Adipose and Leptin in Mice. PLoS ONE, 2012, 7, e40164.	1.1	127
20	A Volumetric Method for Quantifying Atherosclerosis in Mice by Using MicroCT: Comparison to En Face. PLoS ONE, 2011, 6, e18800.	1.1	21
21	Pharmacological Targeting of Glucagon and Glucagon-Like Peptide 1 Receptors Has Different Effects on Energy State and Glucose Homeostasis in Diet-Induced Obese Mice. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 70-81.	1.3	29
22	A Point Mutation in Sec61α1 Leads to Diabetes and Hepatosteatosis in Mice. Diabetes, 2010, 59, 460-470.	0.3	60
23	Loss-of-Function Mutation in Myostatin Reduces Tumor Necrosis Factor α Production and Protects Liver Against Obesity-Induced Insulin Resistance. Diabetes, 2009, 58, 1133-1143.	0.3	139
24	Identification of three loci affecting HDL-cholesterol levels in a screen for chemically induced recessive mutations in mice. Journal of Lipid Research, 2009, 50, 534-545.	2.0	3
25	Antidiabetic effects of 11βâ€HSD1 inhibition in a mouse model of combined diabetes, dyslipidaemia and atherosclerosis. Diabetes, Obesity and Metabolism, 2009, 11, 688-699.	2.2	34
26	New Variants in the <i>Enpp1</i> and <i>Ptpn6</i> Genes Cause Low BMD, Crystal-Related Arthropathy, and Vascular Calcification. Journal of Bone and Mineral Research, 2009, 24, 1552-1564.	3.1	36
27	Fibroblast Growth Factor 21 Reverses Hepatic Steatosis, Increases Energy Expenditure, and Improves Insulin Sensitivity in Diet-Induced Obese Mice. Diabetes, 2009, 58, 250-259.	0.3	970
28	Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Human Molecular Genetics, 2008, 17, 3435-3435.	1.4	0
29	Generation and characterization of two novel mouse models exhibiting the phenotypes of the metabolic syndrome: Apob48 ^{â^'/â^'} Lep ^{ob/ob} mice devoid of ApoE or LdIr. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E496-E505.	1.8	30
30	Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Human Molecular Genetics, 2006, 15, 1884-1893.	1.4	126
31	SUN1 Interacts with Nuclear Lamin A and Cytoplasmic Nesprins To Provide a Physical Connection between the Nuclear Lamina and the Cytoskeleton. Molecular and Cellular Biology, 2006, 26, 3738-3751.	1.1	440
32	Diabetes Insipidus in Mice with a Mutation in Aquaporin-2. PLoS Genetics, 2005, 1, e20.	1.5	61
33	A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Human Molecular Genetics, 2002, 11, 769-777.	1.4	271
34	Lamin A/C gene: sex-determined expression of mutations in Dunnigan-type familial partial lipodystrophy and absence of coding mutations in congenital and acquired generalized lipoatrophy. Diabetes, 2000, 49, 1958-1962.	0.3	165
35	LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nature Genetics, 2000, 24, 153-156.	9.4	653