Alan S Lea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4422194/publications.pdf

Version: 2024-02-01

		623734	888059
18	1,046 citations	14	17
papers	citations	h-index	g-index
18	18	18	1468
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Research, 2010, 44, 4505-4516.	11.3	396
2	Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study. Geochimica Et Cosmochimica Acta, 2006, 70, 2371-2399.	3.9	186
3	Spectroscopic Characterization of Extracellular Polymeric Substances from <i>Escherichia coli</i> and <i>Serratia marcescens</i> Suppression Using Sub-Inhibitory Concentrations of Bismuth Thiols. Biomacromolecules, 2008, 9, 3079-3089.	5.4	113
4	Nanospecific Inhibition of Pyoverdine Siderophore Production in <i>Pseudomonas chlororaphis</i> O6 by CuO Nanoparticles. Chemical Research in Toxicology, 2012, 25, 1066-1074.	3.3	50
5	Unusual aggregates from the oxidation of alkene self-assembled monolayers: a previously unrecognized mechanism for SAM ozonolysis?. Physical Chemistry Chemical Physics, 2005, 7, 3605.	2.8	42
6	Evidence for Localization of Reaction upon Reduction of Carbon Tetrachloride by Granular Iron. Langmuir, 2002, 18, 7688-7693.	3.5	39
7	The use of Auger spectroscopy for the in situ elemental characterization of subâ€micrometer presolar grains. Meteoritics and Planetary Science, 2009, 44, 1033-1049.	1.6	35
8	In Liquid Infrared Scattering Scanning Near-Field Optical Microscopy for Chemical and Biological Nanoimaging. Nano Letters, 2020, 20, 4497-4504.	9.1	31
9	Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser. Optics Express, 2013, 21, 30401.	3.4	30
10	Investigation of Copper(I) Oxide Quantum Dots by Near-Edge X-ray Absorption Fine Structure Spectroscopy. Chemistry of Materials, 2003, 15, 3939-3946.	6.7	21
11	Ultrasensitive Tip- and Antenna-Enhanced Infrared Nanoscopy of Protein Complexes. Journal of Physical Chemistry C, 2019, 123, 17505-17509.	3.1	20
12	Substrate Changes Associated with the Chemistry of Self-Assembled Monolayers on Silicon. Langmuir, 2006, 22, 5617-5624.	3.5	19
13	Molecular Depth Profiling of Sucrose Films: A Comparative Study of C60n+ lons and Traditional Cs+ and O2+ lons. Analytical Chemistry, 2009, 81, 8272-8279.	6.5	19
14	In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2. Nature Materials, 2022, 21, 345-351.	27.5	18
15	The effect of ion irradiation on the dissolution of UO2 and UO2-based simulant fuel. Journal of Alloys and Compounds, 2018, 735, 1350-1356.	5.5	12
16	Imaging Nanoscale Heterogeneity in Ultrathin Biomimetic and Biological Crystals. Journal of Physical Chemistry C, 2018, 122, 24891-24895.	3.1	10
17	Further insights into the Fe(<scp>ii</scp>) reduction of 2-line ferrihydrite: a semi <i>in situ</i> and <i>in situ</i> TEM study. Nanoscale Advances, 2020, 2, 4938-4950.	4.6	5
18	New Approaches for Characterizing Sensor and Other Modern Complex Materials. ECS Transactions, 2009, 19, 137-148.	0.5	0