Bo Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4421966/publications.pdf

Version: 2024-02-01

138 papers	2,446 citations	218677 26 h-index	276875 41 g-index
140	140	140	1530 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Modeling of multi-scale transport phenomena in shale gas production — A critical review. Applied Energy, 2020, 262, 114575.	10.1	161
2	Direct numerical simulation of viscoelastic drag-reducing flow: a faithful finite difference method. Journal of Non-Newtonian Fluid Mechanics, 2004, 116, 431-466.	2.4	112
3	Numerical and experimental investigation of turbulent characteristics in a drag-reducing flow with surfactant additives. International Journal of Heat and Fluid Flow, 2004, 25, 961-974.	2.4	105
4	Experimental study of drag-reduction mechanism for a dilute surfactant solution flow. International Journal of Heat and Mass Transfer, 2008, 51, 835-843.	4.8	105
5	Review of Molecular Simulation Method for Gas Adsorption/desorption and Diffusion in Shale Matrix. Journal of Thermal Science, 2019, 28, 1-16.	1.9	92
6	Molecular dynamics simulation of bubble nucleation on nanostructure surface. International Journal of Heat and Mass Transfer, 2018, 118, 1143-1151.	4.8	61
7	Dynamics of a circular cylinder with an attached splitter plate in laminar flow: A transition from vortex-induced vibration to galloping. Physics of Fluids, 2020, 32, .	4.0	60
8	Advances in Gaussian random field generation: a review. Computational Geosciences, 2019, 23, 1011-1047.	2.4	55
9	Nanoscale Study of Bubble Nucleation on a Cavity Substrate Using Molecular Dynamics Simulation. Langmuir, 2018, 34, 14234-14248.	3.5	51
10	Bubble nucleation on various surfaces with inhomogeneous interface wettability based on molecular dynamics simulation. International Communications in Heat and Mass Transfer, 2018, 98, 135-142.	5.6	50
11	Molecular dynamics studies of bubble nucleation on a grooved substrate. International Journal of Heat and Mass Transfer, 2020, 158, 119850.	4.8	49
12	A comparative study of POD interpolation and POD projection methods for fast and accurate prediction of heat transfer problems. International Journal of Heat and Mass Transfer, 2012, 55, 4827-4836.	4.8	48
13	A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain. Journal of Hazardous Materials, 2018, 342, 418-428.	12.4	40
14	A finite volume method for cylindrical heat conduction problems based on local analytical solution. International Journal of Heat and Mass Transfer, 2012, 55, 5570-5582.	4.8	33
15	Effects of Additives on the Morphology of Thiamine Nitrate: The Great Difference of Two Kinds of Similar Additives. Crystal Growth and Design, 2018, 18, 775-785.	3.0	31
16	Fast method for the hydraulic simulation of natural gas pipeline networks based on the divide-and-conquer approach. Journal of Natural Gas Science and Engineering, 2018, 50, 55-63.	4.4	31
17	Modeling and simulation of the gas-liquid separation process in an axial flow cyclone based on the Eulerian-Lagrangian approach and surface film model. Powder Technology, 2019, 353, 473-488.	4.2	31
18	Experimental Investigation of Mechanical Properties and Failure Behavior of Fluid-Saturated Hot Dry Rocks. Natural Resources Research, 2021, 30, 289-305.	4.7	31

#	Article	IF	Citations
19	A coupled volume-of-fluid and level set method based on multi-dimensional advection for unstructured triangular meshes. Chemical Engineering Science, 2018, 176, 560-579.	3.8	30
20	Advances in rheology and flow assurance studies of waxy crude. Petroleum Science, 2013, 10, 538-547.	4.9	29
21	A coupled volume-of-fluid and level set (VOSET) method based on remapping algorithm for unstructured triangular grids. International Journal of Heat and Mass Transfer, 2017, 111, 232-245.	4.8	29
22	A VOSET method combined with IDEAL algorithm for 3D two-phase flows with large density and viscosity ratio. International Journal of Heat and Mass Transfer, 2017, 114, 155-168.	4.8	28
23	A new general model for phase-change heat transfer of waxy crude oil during the ambient-induced cooling process. Numerical Heat Transfer; Part A: Applications, 2017, 71, 511-527.	2.1	28
24	A coupled volume-of-fluid and level set method based on general curvilinear grids with accurate surface tension calculation. Journal of Computational Physics, 2019, 396, 799-818.	3.8	28
25	Multi-objective optimization of guide vanes for axial flow cyclone using CFD, SVM, and NSGA II algorithm. Powder Technology, 2020, 373, 637-646.	4.2	28
26	Experimental Investigation of Thermal Effect on Fracability Index of Geothermal Reservoirs. Natural Resources Research, 2021, 30, 273-288.	4.7	28
27	Fast thermal simulation of a heated crude oil pipeline with a BFC-Based POD reduced-order model. Applied Thermal Engineering, 2015, 88, 217-229.	6.0	27
28	Oiling out and Polymorphism Control of Pyraclostrobin in Cooling Crystallization. Industrial & Engineering Chemistry Research, 2016, 55, 11631-11637.	3.7	27
29	Effects of Surface Wettability on Rapid Boiling and Bubble Nucleation: A Molecular Dynamics Study. Nanoscale and Microscale Thermophysical Engineering, 2018, 22, 198-212.	2.6	27
30	Long-term heat transfer analysis of deep coaxial borehole heat exchangers via an improved analytical model. Applied Thermal Engineering, 2021, 197, 117370.	6.0	27
31	DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow. International Journal of Heat and Mass Transfer, 2005, 48, 4569-4578.	4.8	26
32	Comparison study on the accuracy and efficiency of the four forms of hydraulic equation of a natural gas pipeline based on linearized solution. Journal of Natural Gas Science and Engineering, 2015, 22, 235-244.	4.4	24
33	POD and wavelet analyses on the flow structures of a polymer drag-reducing flow based on DNS data. International Journal of Heat and Mass Transfer, 2012, 55, 4849-4861.	4.8	23
34	Study on the restart algorithm for a buried hot oil pipeline based on wavelet collocation method. International Journal of Heat and Mass Transfer, 2018, 125, 891-907.	4.8	23
35	A novel POD reduced-order model based on EDFM for steady-state and transient heat transfer in fractured geothermal reservoir. International Journal of Heat and Mass Transfer, 2020, 146, 118783.	4.8	23
36	A coupled volume of fluid and level set method based on analytic PLIC for unstructured quadrilateral grids. Numerical Heat Transfer, Part B: Fundamentals, 2018, 73, 189-205.	0.9	22

#	Article	IF	Citations
37	A Numerical Study on Hydraulic Fracturing Problems via the Proper Generalized Decomposition Method. CMES - Computer Modeling in Engineering and Sciences, 2020, 122, 703-720.	1.1	22
38	Direct numerical simulation of bubble dynamics and heat transfer during nucleate boiling on the micro-pin-finned surfaces. International Journal of Heat and Mass Transfer, 2020, 163, 120504.	4.8	21
39	Sharp Front Capturing Method for Carbon Dioxide Plume Propagation during Injection into a Deep Confined Aquifer. Energy & Deep (2010, 24, 1431-1440).	5.1	20
40	Numerical investigation of melting of waxy crude oil in an oil tank. Applied Thermal Engineering, 2017, 115, 81-90.	6.0	19
41	Solution-Mediated Phase Transformation of Argatroban: Ternary Phase Diagram, Rate-Determining Step, and Transformation Kinetics. Industrial & Engineering Chemistry Research, 2017, 56, 4539-4548.	3.7	18
42	A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery. International Journal of Pharmaceutics, 2017, 533, 73-83.	5.2	18
43	Experimental and numerical study on bubble dynamics and heat transfer during nucleate boiling of FC-72. International Journal of Heat and Mass Transfer, 2019, 139, 822-831.	4.8	18
44	An adaptive coupled volume-of-fluid and level set method based on unstructured grids. Physics of Fluids, 2021, 33, .	4.0	18
45	Study on the effect of foreign particle on bubble nucleation by using molecular dynamics simulation. Journal of Molecular Liquids, 2020, 305, 112876.	4.9	17
46	A three dimensional coupled VOF and Level set (VOSET) method with and without phase change on general curvilinear grids. Chemical Engineering Science, 2020, 223, 115705.	3.8	17
47	Fast Calculation of the Soil Temperature Field around a Buried Oil Pipeline using a Body-Fitted Coordinates-Based POD-Galerkin Reduced-Order Model. Numerical Heat Transfer; Part A: Applications, 2013, 63, 776-794.	2.1	16
48	Comparison of turbulent drag reduction mechanisms of viscoelastic fluids based on the Fukagata-Iwamoto-Kasagi identity and the Renard-Deck identity. Physics of Fluids, 2020, 32, 013104.	4.0	16
49	Orthogonal test design to optimize products and to characterize heavy oil via biomass hydrothermal treatment. Energy, 2015, 88, 139-148.	8.8	15
50	Experimental and numerical study on the heat transfer characteristics of waxy crude oil in a 100,000†m3 double-plate floating roof oil tank. Applied Thermal Engineering, 2018, 136, 335-348.	6.0	15
51	The effect of foreign particles on liquid film evaporation at the nanoscale: A molecular dynamics simulation. Journal of Molecular Liquids, 2020, 319, 114218.	4.9	15
52	Effects of simulation system on the phase transition behavior of liquid film: A molecular dynamics study. Journal of Molecular Liquids, 2020, 311, 113306.	4.9	15
53	Influences of Hydrogen Blending on the Joule–Thomson Coefficient of Natural Gas. ACS Omega, 2021, 6, 16722-16735.	3.5	15
54	Study on a BFC-Based POD-Galerkin Reduced-Order Model for the Unsteady-State Variable-Property Heat Transfer Problem. Numerical Heat Transfer, Part B: Fundamentals, 2014, 65, 256-281.	0.9	14

#	Article	IF	Citations
55	Molecular Dynamics Study of Bubble Nucleation on a Substrate with Nonuniform Wettability. Langmuir, 2020, 36, 5336-5348.	3.5	14
56	Insights into the Effect of Spontaneous Fluid Imbibition on the Formation Mechanism of Fracture Networks in Brittle Shale: An Experimental Investigation. ACS Omega, 2020, 5, 8847-8857.	3.5	14
57	Investigation of water bubble nucleation by using molecular dynamics simulation. Journal of Molecular Liquids, 2021, 334, 116037.	4.9	14
58	Effects of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network. Oil and Gas Science and Technology, 2021, 76, 70.	1.4	14
59	Development of a VOF+LS+SPP method based on FLUENT for simulating bubble behaviors in the electric field. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 186-201.	0.9	13
60	Further study on the thermal characteristic of a buried waxy crude oil pipeline during its cooling process after a shutdown. Numerical Heat Transfer; Part A: Applications, 2017, 71, 137-152.	2.1	13
61	Temperature drop and gelatinization characteristics of waxy crude oil in 1000†m3 single and double-plate floating roof oil tanks during storage. International Journal of Heat and Mass Transfer, 2019, 136, 457-469.	4.8	13
62	Molecular Dynamics Study of Bubble Nucleation on an Ideally Smooth Substrate. Langmuir, 2020, 36, 13725-13734.	3.5	13
63	Assessment method for gas supply reliability of natural gas pipeline networks considering failure and repair. Journal of Natural Gas Science and Engineering, 2021, 88, 103817.	4.4	13
64	Effects of Transport on Reactions in Homogeneous Tubular Flow. Industrial & Engineering Chemistry Research, 2006, 45, 8583-8593.	3.7	12
65	Acceleration of Gas Flow Simulations in Dual-Continuum Porous Media Based on the Mass-Conservation POD Method. Energies, 2017, 10, 1380.	3.1	12
66	Numerical investigation of the POD reduced-order model for fast predictions of two-phase flows in porous media. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4167-4204.	2.8	12
67	Study on a BFC-based POD-Galerkin ROM for the steady-state heat transfer problem. International Journal of Heat and Mass Transfer, 2014, 69, 1-5.	4.8	11
68	Numerical simulation of bubble dynamics in the gravitational and uniform electric fields. Numerical Heat Transfer; Part A: Applications, 2017, 71, 1034-1051.	2.1	11
69	Implementation of the IDEAL algorithm for complex steady-state incompressible fluid flow problems in OpenFOAM. International Communications in Heat and Mass Transfer, 2017, 88, 63-73.	5.6	11
70	Numerical study on the temperature drop characteristics of waxy crude oil in a double-plate floating roof oil tank. Applied Thermal Engineering, 2017, 124, 560-570.	6.0	11
71	GPU Acceleration of CFD Algorithm: HSMAC and SIMPLE. Procedia Computer Science, 2017, 108, 1982-1989.	2.0	11

 $Measurement \ and \ Correlation \ of \ Solubility \ of \ Cefathiamidine \ in \ Water + (Acetone, Ethanol, or) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ / Operlock \ 100 \ Tf \ 50 \ 62 \ Operlock \ 100 \ Tf \ 50 \ 62 \ Operlock \ 100 \ Tf \ 50 \ Operlock \ 100 \ Tf \ Operlock \$

72

#	Article	IF	Citations
73	Role of elasto-inertial turbulence in viscoelastic drag-reducing turbulence. Physics of Fluids, 2021, 33,	4.0	10
74	Stratum temperature recovery considering groundwater advection in periodic operations of deep borehole heat exchangers. Applied Thermal Engineering, 2022, 206, 118113.	6.0	10
75	POD reduced-order model for steady natural convection based on a body-fitted coordinate. International Communications in Heat and Mass Transfer, 2015, 68, 104-113.	5.6	9
76	Analysis of interphase forces and investigation of their effect on particle transverse motion in particle-laden channel turbulence. International Journal of Multiphase Flow, 2017, 88, 11-29.	3.4	9
77	A POD-Galerkin reduced-order model for isotropic viscoelastic turbulent flow. International Communications in Heat and Mass Transfer, 2017, 84, 121-133.	5.6	9
78	Adaptive implicit finite difference method for natural gas pipeline transient flow. Oil and Gas Science and Technology, 2018, 73, 21.	1.4	9
79	Comparative study on numerical performances of log-conformation representation and standard conformation representation in the simulation of viscoelastic fluid turbulent drag-reducing channel flow. Physics of Fluids, 2021, 33, 023101.	4.0	9
80	Study on the multi-objective optimization of reliability and operating cost for natural gas pipeline network. Oil and Gas Science and Technology, 2021, 76, 42.	1.4	9
81	Investigation of thermal-hydro-mechanical coupled fracture propagation considering rock damage. Computational Geosciences, 2022, 26, 1167-1187.	2.4	9
82	Numerical Analysis of Frozen Soil Around the Mohe–Daqing Crude Oil Pipeline with Thermosyphons. Heat Transfer Engineering, 2018, 39, 630-641.	1.9	8
83	A Numerical Study on the Diversion Mechanisms of Fracture Networks in Tight Reservoirs with Frictional Natural Fractures. Energies, 2018, 11, 3035.	3.1	8
84	An Efficiently Decoupled Implicit Method for Complex Natural Gas Pipeline Network Simulation. Energies, 2019, 12, 1516.	3.1	8
85	Study on the Parametric Regression of a Multiparameter Thixotropic Model for Waxy Crude Oil. Energy &	5.1	7
86	A POD-DEIM reduced model for compressible gas reservoir flow based on the Peng-Robinson equation of state. Journal of Natural Gas Science and Engineering, 2020, 79, 103367.	4.4	7
87	Complex Fracture Closure Pressure Analysis During Shut-in: A Numerical Study. Energy Exploration and Exploitation, 2022, 40, 1252-1267.	2.3	7
88	Repicturing viscoelastic drag-reducing turbulence by introducing dynamics of elasto-inertial turbulence. Journal of Fluid Mechanics, 2022, 940, .	3.4	7
89	POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media. Open Physics, 2016, 14, 588-601.	1.7	6
90	Migration behaviors of leaky dielectric droplets with electric and hydrodynamic forces. Physical Review E, 2019, 100, 033113.	2.1	6

#	Article	IF	Citations
91	A comparative study on simulating flow-induced fracture deformation in subsurface media by means of extended FEM and FVM. Oil and Gas Science and Technology, 2020, 75, 41.	1.4	6
92	Experimental Study on the Failure Mechanisms in Brittle Shales. ACS Omega, 2020, 5, 10382-10394.	3.5	6
93	Numerical investigation of airflow and heat transfer characteristics and optimal design of the American ginseng drying room. Applied Thermal Engineering, 2021, 183, 115885.	6.0	6
94	GPU-accelerated hydraulic simulations of large-scale natural gas pipeline networks based on a two-level parallel process. Oil and Gas Science and Technology, 2020, 75, 86.	1.4	6
95	Numerical simulations of polygonal particles settling within non-Newtonian fluids. Physics of Fluids, 2022, 34, .	4.0	6
96	Comparative studies on accuracy and convergence rate between the cell-centered scheme and the cell-vertex scheme for triangular grids. International Journal of Heat and Mass Transfer, 2012, 55, 8051-8060.	4.8	5
97	Flux conservation principle on construction of residual restriction operators for multigrid method. International Communications in Heat and Mass Transfer, 2014, 54, 60-66.	5.6	5
98	Study on computational efficiency of composite schemes for convection-diffusion equations using single-grid and multigrid methods. Journal of Thermal Science and Technology, 2015, 10, JTST0009-JTST0009.	1.1	5
99	Comparison Study on the Performances of Finite Volume Method and Finite Difference Method. Journal of Applied Mathematics, 2013, 2013, 1-10.	0.9	4
100	A novel finite volume method for cylindrical heat conduction problems. International Communications in Heat and Mass Transfer, 2015, 63, 8-16.	5.6	4
101	Similarity Conversion of Centrifugal Natural Gas Compressors Based on Predictor-Corrector. Procedia Computer Science, 2017, 108, 1973-1981.	2.0	4
102	A mixed subgrid-scale model based on ICSM and TADM for LES of surfactant-induced drag-reduction in turbulent channel flow. Applied Thermal Engineering, 2017, 115, 1322-1329.	6.0	4
103	Numerical Simulation on the Dispersion of Natural Gas Releases from a Buried Pipeline. Heat Transfer Engineering, 2018, 39, 687-699.	1.9	4
104	Fast prediction of the replacement process of oil vapor in horizontal tank and its improved safety evaluation method. Chemical Engineering Research and Design, 2019, 122, 298-306.	5.6	4
105	Parametric regression of a multiparameter thixotropic model for waxy crude oil based on multiobjective strategy. Journal of Petroleum Science and Engineering, 2019, 173, 287-297.	4.2	4
106	A Frequency Analysis Method to Estimate the Relative Importance of Basset Force on Small Particles in Turbulence. International Journal of Multiphase Flow, 2021, 139, 103640.	3.4	4
107	A collocated finite volume method for incompressible flow on unstructured meshes. Progress in Computational Fluid Dynamics, 2005, 5, 181.	0.2	3
108	An Improved Paving Method of Automatic Quadrilateral Mesh Generation. Numerical Heat Transfer, Part B: Fundamentals, 2013, 64, 218-238.	0.9	3

#	Article	IF	Citations
109	A new two-dimensional hybrid grid generation method based on improved hole cutting. International Communications in Heat and Mass Transfer, 2014, 54, 103-114.	5.6	3
110	Numerical Simulation of Fluid Flow and Heat Transfer Processes 2014. Advances in Mechanical Engineering, 2015, 7, 645351.	1.6	3
111	Performance analyses of the IDEAL algorithm combined with the fuzzy control method for 3D incompressible fluid flow and heat transfer problems. Numerical Heat Transfer, Part B: Fundamentals, 2016, 69, 432-446.	0.9	3
112	Direct Numerical Study on Effect of Interparticle Collision in Particle-Laden Turbulence. AIAA Journal, 2016, 54, 3212-3222.	2.6	3
113	Analytical solutions to dissolved contaminant plume evolution with source depletion during carbon dioxide storage. Journal of Contaminant Hydrology, 2016, 189, 1-11.	3.3	3
114	A Fast Algorithm to Simulate Droplet Motions in Oil/Water Two Phase Flow. Procedia Computer Science, 2017, 108, 1953-1962.	2.0	3
115	Direct numerical simulation of surfactant solution flow in the wideâ€rib rectangular grooved channel. AICHE Journal, 2018, 64, 2898-2912.	3.6	3
116	Direct numerical simulation of turbulent flow over wideâ€rib rectangular grooves. Canadian Journal of Chemical Engineering, 2018, 96, 1207-1220.	1.7	3
117	Study on a POD reduced-order model for steady-state flows in fractured porous media. International Communications in Heat and Mass Transfer, 2020, 112, 104489.	5.6	3
118	Numerical Simulation of Fluid Flow and Heat Transfer Processes. Advances in Mechanical Engineering, 2013, 5, 497950.	1.6	3
119	An unstructured grids-based discretization method for convection–diffusion equations in the two-dimensional cylindrical coordinate systems. International Journal of Heat and Mass Transfer, 2013, 67, 581-592.	4.8	2
120	POD reduced-order model for steady laminar flow based on the body-fitted coordinate. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 560-573.	0.9	2
121	POD-Galerkin reduced-order model for viscoelastic turbulent channel flow. Numerical Heat Transfer, Part B: Fundamentals, 2017, 72, 268-283.	0.9	2
122	An N-parallel FENE-P constitutive model and its application in large-eddy simulation of viscoelastic turbulent drag-reducing flow. Journal of Computational Science, 2018, 29, 70-80.	2.9	2
123	Acceleration of Gas Reservoir Simulation Using Proper Orthogonal Decomposition. Geofluids, 2018, 2018, 1-15.	0.7	2
124	A Galerkinâ€free/equationâ€free model reduction method for singleâ€phase flow in fractured porous media. Energy Science and Engineering, 2020, 8, 1997-2010.	4.0	2
125	Study on solving performance of VOSETÂ+ÂIDEAL with different algebraic equation solution methods. Applied Thermal Engineering, 2021, 184, 116368.	6.0	2
126	Comparison Study on Linear Interpolation and Cubic B-Spline Interpolation Proper Orthogonal Decomposition Methods. Advances in Mechanical Engineering, 2013, 5, 561875.	1.6	2

#	Article	IF	CITATIONS
127	Investigation and improvement of intelligent evolutionary algorithms for the energy cost optimization of an industry crude oil pipeline system. Engineering Optimization, 2023, 55, 856-875.	2.6	2
128	Development of an efficient large time step unsteady solver for incompressible flows using the IDEAL algorithm in OpenFOAM. Journal of Computational Science, 2022, 61, 101692.	2.9	2
129	The Discretization Method for Convention-diffusion Equations in Two-dimensional Cylindrical Coordinate Systems based on Unstructured Grids. Procedia Computer Science, 2013, 18, 2117-2126.	2.0	1
130	A pseudo point source model based on velocity coupled method for dilute particle-laden flow with dissipation scale particles. International Journal of Multiphase Flow, 2018, 103, 106-123.	3.4	1
131	LES Study on High Reynolds Turbulent Drag-Reducing Flow of Viscoelastic Fluids Based on Multiple Relaxation Times Constitutive Model and Mixed Subgrid-Scale Model. Lecture Notes in Computer Science, 2018, , 174-188.	1.3	1
132	Study on an N-Parallel FENE-P Constitutive Model Based on Multiple Relaxation Times for Viscoelastic Fluid. Lecture Notes in Computer Science, 2018, , 610-623.	1.3	1
133	Modern numerical methods and their applications in mechanical engineering. Advances in Mechanical Engineering, 2019, 11, 168781401988725.	1.6	1
134	Surrogate modeling and optimization for the unequal diameter radial diffuser of stratified thermal energy storage tanks. Energy Science and Engineering, 2022, 10, 2497-2508.	4.0	1
135	A Novel Layered Slice Algorithm for Soil Heat Storage and Its Solving Performance Analysis. Energies, 2022, 15, 3743.	3.1	1
136	Numerical simulation of fluid flow and heat transfer processes 2015. Advances in Mechanical Engineering, 2016, 8, 168781401666461.	1.6	0
137	BFC-POD-ROM Aided Fast Thermal Scheme Determination for China's Secondary Dong-Lin Crude Pipeline with Oils Batching Transportation. Energies, 2018, 11, 2666.	3.1	0
138	An efficient multigrid-DEIM semi-reduced-order model for simulation of single-phase compressible flow in porous media. Petroleum Science, 2021, 18, 923.	4.9	0