Yuta Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4421937/publications.pdf Version: 2024-02-01

ΥΠΤΑ ΣΑΤΟ

#	Article	IF	CITATIONS
1	Tuning of photoluminescence intensity and Fermi level position of individual single-walled carbon nanotubes by molecule confinement. Carbon, 2022, 186, 423-430.	5.4	3
2	Vanadium diphosphide as a negative electrode material for sodium secondary batteries. Journal of Power Sources, 2021, 483, 229182.	4.0	14
3	One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
4	Deoxofluorination of graphite oxide with sulfur tetrafluoride. Dalton Transactions, 2020, 49, 47-56.	1.6	7
5	Covalently functionalized layered MoS ₂ supported Pd nanoparticles as highly active oxygen reduction electrocatalysts. Nanoscale, 2020, 12, 18278-18288.	2.8	13
6	Blue emission at atomically sharp 1D heterojunctions between graphene and h-BN. Nature Communications, 2020, 11, 5359.	5.8	23
7	Optimization of the Carbon Content in Copper Phosphide–Carbon Composites for High Performance Sodium Secondary Batteries Using Ionic Liquids. ChemElectroChem, 2020, 7, 2477-2484.	1.7	6
8	Effect of hydrogen-gas treatment on the local structure of graphene-like graphite. Carbon, 2020, 163, 162-168.	5.4	9
9	Graphene-Like Graphite Negative Electrode Rapidly Chargeable at Constant Voltage. Journal of the Electrochemical Society, 2020, 167, 110518.	1.3	5
10	One-dimensional van der Waals heterostructures. Science, 2020, 367, 537-542.	6.0	238
11	Core–Shell Pd@M (M=Ni, Cu, Co) Nanoparticles/Graphene Ensembles with High Mass Electrocatalytic Activity Toward the Oxygen Reduction Reaction. Chemistry - A European Journal, 2019, 25, 11105-11113.	1.7	12
12	Fermi level shift in carbon nanotubes by dye confinement. Carbon, 2019, 149, 772-780.	5.4	17
13	Vanadium phosphide–phosphorus composite as a high-capacity negative electrode for sodium secondary batteries using an ionic liquid electrolyte. Electrochemistry Communications, 2019, 102, 46-51.	2.3	25
14	Lithium fluoride/iron difluoride composite prepared by a fluorolytic sol–gel method: Its electrochemical behavior and charge–discharge mechanism as a cathode material for lithium secondary batteries. Journal of Power Sources, 2019, 412, 180-188.	4.0	23
15	CuP ₂ /C Composite Negative Electrodes for Sodium Secondary Batteries Operating at Roomâ€toâ€Intermediate Temperatures Utilizing Ionic Liquid Electrolyte. ChemElectroChem, 2018, 5, 1340-1344.	1.7	24
16	Chiral vector and metal catalyst-dependent growth kinetics of single-wall carbon nanotubes. Carbon, 2018, 133, 283-292.	5.4	21
17	Unique Tube–Ring Interactions: Complexation of Singleâ€Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes. Small, 2018, 14, e1800720.	5.2	34
18	Carbon Nanomaterials: Unique Tube–Ring Interactions: Complexation of Singleâ€Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes (Small 26/2018). Small, 2018, 14, 1870120.	5.2	2

#	Article	IF	CITATIONS
19	Sulfur-Doped Graphene-Supported Nickel-Core Palladium-Shell Nanoparticles as Efficient Oxygen Reduction and Methanol Oxidation Electrocatalyst. ACS Applied Energy Materials, 2018, 1, 3869-3880.	2.5	25
20	Polymeric acid-doped transparent carbon nanotube electrodes for organic solar cells with the longest doping durability. Journal of Materials Chemistry A, 2018, 6, 14553-14559.	5.2	60
21	Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale, 2017, 9, 7998-8006.	2.8	29
22	Nanostructural characterization of artificial pinning centers in PLD-processed REBa2Cu3O7-δ films. Ultramicroscopy, 2017, 176, 151-160.	0.8	8
23	Mechanistic insights into the photocatalytic properties of metal nanocluster/graphene ensembles. Examining the role of visible light in the reduction of 4-nitrophenol. Nanoscale, 2017, 9, 9685-9692.	2.8	26
24	Perovskite Solar Cells Using Carbon Nanotubes Both as Cathode and as Anode. Journal of Physical Chemistry C, 2017, 121, 25743-25749.	1.5	89
25	Structures of Highly Fluorinated Compounds of Layered Carbon. , 2017, , 283-303.		6
26	Enhancing the Infrared Response of Carbon Nanotubes From Oligo-Quaterthiophene Interactions. Journal of Physical Chemistry C, 2016, 120, 28802-28807.	1.5	19
27	Distributions of hafnia and titania cores in EUV metal resists evaluated by scanning transmission electron microscopy and electron energy loss spectroscopy. Applied Physics Express, 2016, 9, 111801.	1.1	5
28	Characterization of 'metal resist' for EUV lithography. Proceedings of SPIE, 2016, , .	0.8	8
29	Reducing Effect of a Slight Amount of NaCl Vapor on Pest Oxidation of Ta–75at%Al at High Temperature. Oxidation of Metals, 2016, 85, 39-49.	1.0	2
30	Metal resist for extreme ultraviolet lithography characterized by scanning transmission electron microscopy. Applied Physics Express, 2016, 9, 031601.	1.1	13
31	Nickel clusters embedded in carbon nanotubes as high performance magnets. Scientific Reports, 2015, 5, 15033.	1.6	23
32	Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy. Nature Communications, 2015, 6, 7732.	5.8	33
33	Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale, 2015, 7, 1383-1391.	2.8	60
34	Ballistic- and quantum-conductor carbon nanotubes: A reference experiment put to the test. Physical Review B, 2014, 90, .	1.1	9
35	Aberration-corrected STEM/TEM imaging at 15 kV. Ultramicroscopy, 2014, 145, 50-55.	0.8	42
36	Functionalized graphene sheets coordinating metal cations. Carbon, 2014, 75, 81-94.	5.4	57

#	Article	IF	CITATIONS
37	Quantitative evaluation of temporal partial coherence using 3D Fourier transforms of through-focus TEM images. Ultramicroscopy, 2013, 134, 86-93.	0.8	15
38	Atomic imaging and spectroscopy of low-dimensional materials with interrupted periodicities. Journal of Electron Microscopy, 2012, 61, 285-291.	0.9	9
39	Innovative electron microscope for light-element atom visualization. Synthesiology, 2012, 4, 172-182.	0.2	2
40	Direct evidence for covalent functionalization of carbon nanohorns by high-resolution electron microscopy imaging of C60 conjugated onto their skeleton. Carbon, 2012, 50, 3909-3914.	5.4	11
41	Synthesis and Atomic Characterization of a Ti ₂ O ₃ Nanosheet. Journal of Physical Chemistry Letters, 2011, 2, 1820-1823.	2.1	25
42	Exfoliated graphene ligands stabilizing copper cations. Carbon, 2011, 49, 3375-3378.	5.4	19
43	Imaging Individual Molecules and Atoms by Aberration-Corrected Transmission Electron Microscopy. Nihon Kessho Gakkaishi, 2011, 53, 280-284.	0.0	0
44	Innovative electron microscope for light-element atom visualization. Synthesiology, 2011, 4, 166-175.	0.2	0
45	Aberration-Corrected Electron Microscopy for Nanocarbon Materials. Journal of the Vacuum Society of Japan, 2011, 54, 264-269.	0.3	0
46	Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. Journal of Electron Microscopy, 2010, 59, S7-S13.	0.9	98
47	Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nature Chemistry, 2009, 1, 415-418.	6.6	152
48	Iron and Ruthenium Nanoparticles in Carbon Prepared by Thermolysis of Buckymetallocenes. Chemistry - an Asian Journal, 2009, 4, 457-465.	1.7	15
49	HR-TEM of Carbon Network, Towards Individual C-C Bond Imaging. Microscopy and Microanalysis, 2009, 15, 122-123.	0.2	0
50	Siteâ€Dependent Migration Behavior of Individual Cesium Ions Inside and Outside C ₆₀ Fullerene Nanopeapods. Small, 2008, 4, 1080-1083.	5.2	13
51	Chiral-Angle Distribution for Separated Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 3151-3154.	4.5	69
52	Direct Imaging of Irradiation-induced Atomic Defects in Carbon Nanotubes. Materia Japan, 2008, 47, 646-646.	0.1	1
53	é›»åé;•å¾®éţā«ã,^ã,‹ãf•ãf©ãf¼ãf¬ãf³ãf"ãf¼ãfãffãf‰ã®è¦³å¯Ÿ. Materia Japan, 2007, 46, 259-264.	0.1	0
54	Electrical Transport and Optical Properties of Carbon Nanotubes probed by In Situ and Cross-Correlated Experiments. Microscopy and Microanalysis, 2007, 13, .	0.2	0

#	Article	IF	CITATIONS
55	Structures ofD5d-C80andIh-Er3N@C80Fullerenes and Their Rotation Inside Carbon Nanotubes Demonstrated by Aberration-Corrected Electron Microscopy. Nano Letters, 2007, 7, 3704-3708.	4.5	63
56	Imaging active topological defects in carbon nanotubes. Nature Nanotechnology, 2007, 2, 358-360.	15.6	338
57	Correlation between atomic rearrangement in defective fullerenes and migration behavior of encaged metal ions. Physical Review B, 2006, 73, .	1.1	14
58	Electronâ€Induced Puncturing of Endohedral Metallofullerenes. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 261-267.	1.0	2
59	Gate Effect of Vacancy-type Defect of Fullerene Cages on Metal-Atom Migrations in Metallofullerenes. Nano Letters, 2006, 6, 1389-1395.	4.5	16
60	Reaction of layered carbon fluorides CxF (x=2.5–3.6) and hydrogen. Carbon, 2006, 44, 664-670.	5.4	14
61	Direct imaging of intracage structure in titanium-carbide endohedral metallofullerene. Physical Review B, 2006, 73, .	1.1	35
62	HR-TEM study of atomic defects in carbon nanostructures. AIP Conference Proceedings, 2005, , .	0.3	3
63	Which Do Endohedral Ti2C80Metallofullerenes Prefer Energetically:Â Ti2@C80or Ti2C2@C78? A Theoretical Study. Journal of Physical Chemistry B, 2005, 109, 20251-20255.	1.2	78
64	Entrapping of Exohedral Metallofullerenes in Carbon Nanotubes:  (CsC60)n@SWNT Nano-Peapods. Journal of the American Chemical Society, 2005, 127, 17972-17973.	6.6	47
65	On the so-called "semi-ionic―C–F bond character in fluorine–GIC. Carbon, 2004, 42, 3243-3249.	5.4	198
66	Short-range structures of poly(dicarbon monofluoride) (C2F)n and poly(carbon monofluoride) (CF)n. Carbon, 2004, 42, 2897-2903.	5.4	55
67	Defect-Induced Atomic Migration in Carbon Nanopeapod:Â Tracking the Single-Atom Dynamic Behavior. Nano Letters, 2004, 4, 2451-2454.	4.5	57
68	Refluorination of pyrocarbon prepared from fluorine–GIC. Solid State Sciences, 2003, 5, 1285-1290.	1.5	17
69	Reversible intercalation of HF in fluorine–GICs. Carbon, 2003, 41, 351-357.	5.4	41
70	Pyrolytically prepared carbon from fluorine–GIC. Carbon, 2003, 41, 1149-1156.	5.4	10
71	Direct conversion mechanism of fluorine–GIC into poly(carbon monofluoride), (CF). Carbon, 2003, 41, 1971-1977.	5.4	22
72	Thermal decomposition of 1st stage fluorine–graphite intercalation compounds. Journal of Fluorine Chemistry, 2001, 110, 31-36.	0.9	16

#	Article	IF	CITATIONS
73	Thermal decomposition mechanism of fluorine–graphite intercalation compounds. Carbon, 2001, 39, 954-956.	5.4	3
74	Structural Study of the Interfaces of Fe(Co)/AlOx/Fe Ferromagnetic Tunnel Junctions Journal of the Magnetics Society of Japan, 1999, 23, 1321-1324.	0.4	0
75	The study for substrate temperature effects on thermoelectric properties of the amorphous Si-Ge-Au thin films. , 0, , .		1