
Ulrich Rothbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/442142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibody Binding and Angiotensin-Converting Enzyme 2 Binding Inhibition Is Significantly Reduced for Both the BA.1 and BA.2 Omicron Variants. Clinical Infectious Diseases, 2023, 76, e240-e249.	2.9	11
2	Decisive role of water and protein dynamics in residence time of p $38\hat{l}\pm$ MAP kinase inhibitors. Nature Communications, 2022, 13, 569.	5.8	17
3	Robust and durable serological response following pediatric SARS-CoV-2 infection. Nature Communications, 2022, 13, 128.	5.8	54
4	Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. Cell Reports Methods, 2022, 2, 100165.	1.4	27
5	Biparatopic nanobodies protect mice from lethal challenge with SARSâ€CoVâ€2 variants of concern. EMBO Reports, 2022, 23, e53865.	2.0	18
6	Peptide-Tag Specific Nanobodies for Studying Proteins in Live Cells. Methods in Molecular Biology, 2022, 2446, 555-579.	0.4	0
7	Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop. Cell Death and Disease, 2022, 13, 168.	2.7	6
8	Comparative Magnitude and Persistence of Humoral SARS-CoV-2 Vaccination Responses in the Adult Population in Germany. Frontiers in Immunology, 2022, 13, 828053.	2.2	11
9	A Nanobody-Based Toolset to Monitor and Modify the Mitochondrial GTPase Miro1. Frontiers in Molecular Biosciences, 2022, 9, 835302.	1.6	5
10	Diminishing Immune Responses against Variants of Concern in Dialysis Patients 4 Months after SARS-CoV-2 mRNA Vaccination. Emerging Infectious Diseases, 2022, 28, 743-750.	2.0	18
11	COVID-19 patient serum less potently inhibits ACE2-RBD binding for various SARS-CoV-2 RBD mutants. Scientific Reports, 2022, 12, 7168.	1.6	15
12	The interaction between anti-PF4 antibodies and anticoagulants in vaccine-induced thrombotic thrombocytopenia. Blood, 2022, 139, 3430-3438.	0.6	19
13	A Novel PNGase Rc for Improved Protein N-Deglycosylation in Bioanalytics and Hydrogen–Deuterium Exchange Coupled With Mass Spectrometry Epitope Mapping under Challenging Conditions. Analytical Chemistry, 2022, 94, 9863-9871.	3.2	5
14	SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nature Immunology, 2021, 22, 74-85.	7.0	490
15	Magnetic Bead-Based Immunoassay Allows Rapid, Inexpensive, and Quantitative Detection of Human SARS-CoV-2 Antibodies. ACS Sensors, 2021, 6, 703-708.	4.0	61
16	Exploring beyond clinical routine SARS-CoV-2 serology using MultiCoV-Ab to evaluate endemic coronavirus cross-reactivity. Nature Communications, 2021, 12, 1152.	5.8	71
17	Multiplexed Serum Antibody Screening Platform Using Virus Extracts from Endemic <i>Coronaviridae</i> and SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1596-1606.	1.8	7
18	HDX-MS for Epitope Characterization of a Therapeutic ANTIBODY Candidate on the Calcium-Binding Protein Annexin-A1. Antibodies, 2021, 10, 11.	1.2	11

#	Article	IF	CITATIONS
19	NeutrobodyPlex—monitoring SARSâ€CoVâ€2 neutralizing immune responses using nanobodies. EMBO Reports, 2021, 22, e52325.	2.0	43
20	Immune response to SARS-CoV-2 variants of concern in vaccinated individuals. Nature Communications, 2021, 12, 3109.	5.8	118
21	A purification platform for antibodies and derived fragments using a de novo designed affinity adsorbent. Separation and Purification Technology, 2021, 265, 118476.	3.9	5
22	Generation and characterization of the human induced pluripotent stem cell line NMIi010-A from peripheral blood mononuclear cells of a healthy 49–year old male individual. Stem Cell Research, 2021, 54, 102427.	0.3	2
23	Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on haemodialysis. EBioMedicine, 2021, 70, 103524.	2.7	53
24	Tris(hydroxymethyl)aminomethane Compatibility with N-Hydroxysuccinimide Ester Chemistry: Biotinylation of Peptides and Proteins in TRIS Buffer. Bioconjugate Chemistry, 2021, 32, 1960-1965.	1.8	1
25	Parallelizable Microfluidic Platform to Model and Assess In Vitro Cellular Barriers: Technology and Application to Study the Interaction of 3D Tumor Spheroids with Cellular Barriers. Biosensors, 2021, 11, 314.	2.3	9
26	Nanobodies – Little helpers unravelling intracellular signaling. Free Radical Biology and Medicine, 2021, 176, 46-61.	1.3	19
27	Single-Domain Antibodies for Targeting, Detection, and In Vivo Imaging of Human CD4+ Cells. Frontiers in Immunology, 2021, 12, 799910.	2.2	18
28	Improved targeting of human CD4+ T cells by nanobody-modified AAV2 gene therapy vectors. PLoS ONE, 2021, 16, e0261269.	1.1	14
29	Evidence for increased SARS-CoV-2 susceptibility and COVID-19 severity related to pre-existing immunity to seasonal coronaviruses. Cell Reports, 2021, 37, 110169.	2.9	34
30	Blocking Y-Box Binding Protein-1 through Simultaneous Targeting of PI3K and MAPK in Triple Negative Breast Cancers. Cancers, 2020, 12, 2795.	1.7	14
31	A novel epitope tagging system to visualize and monitor antigens in live cells with chromobodies. Scientific Reports, 2020, 10, 14267.	1.6	26
32	Systematic Investigation of Polyurethane Biomaterial Surface Roughness on Human Immune Responses <i>in vitro</i> . BioMed Research International, 2020, 2020, 1-15.	0.9	11
33	Nanobodies Right in the Middle: Intrabodies as Toolbox to Visualize and Modulate Antigens in the Living Cell. Biomolecules, 2020, 10, 1701.	1.8	24
34	Okadaic acid activates Wnt/β-catenin-signaling in human HepaRG cells. Archives of Toxicology, 2019, 93, 1927-1939.	1.9	10
35	A Strategy to Optimize the Generation of Stable Chromobody Cell Lines for Visualization and Quantification of Endogenous Proteins in Living Cells. Antibodies, 2019, 8, 10.	1.2	20
36	Speed up to find the right ones: rapid discovery of functional nanobodies. Nature Structural and Molecular Biology, 2018, 25, 199-201.	3.6	7

#	Article	IF	CITATIONS
37	A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging. Nature Communications, 2018, 9, 930.	5.8	139
38	Chromobodies to Quantify Changes of Endogenous Protein Concentration in Living Cells. Molecular and Cellular Proteomics, 2018, 17, 2518-2533.	2.5	28
39	Akt1 and Akt3 but not Akt2 through interaction with DNA-PKcs stimulate proliferation and post-irradiation cell survival of K-RAS-mutated cancer cells. Cell Death Discovery, 2017, 3, 17072.	2.0	35
40	Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy. Frontiers in Immunology, 2017, 8, 1030.	2.2	84
41	Abstract 3054: Tracing EMT with fluorescent biosensors (chromobodies) in living cancer cells. , 2017, ,		Ο
42	Peptides in headlock – a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy. Scientific Reports, 2016, 6, 19211.	1.6	111
43	A Multiplexed High-Content Screening Approach Using the Chromobody Technology to Identify Cell Cycle Modulators in Living Cells. Journal of Biomolecular Screening, 2016, 21, 965-977.	2.6	18
44	Visualizing Epithelial–Mesenchymal Transition Using the Chromobody Technology. Cancer Research, 2016, 76, 5592-5596.	0.4	27
45	A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib. EBioMedicine, 2016, 8, 132-149.	2.7	44
46	Coordinate regulation of Cyp2e1 by β-catenin- and hepatocyte nuclear factor 1α-dependent signaling. Toxicology, 2016, 350-352, 40-48.	2.0	14
47	From Enzyme to Whole Blood: Sequential Screening Procedure for Identification and Evaluation of p38 MAPK Inhibitors. Methods in Molecular Biology, 2016, 1360, 123-148.	0.4	10
48	A New Nanobody-Based Biosensor to Study Endogenous PARP1 In Vitro and in Live Human Cells. PLoS ONE, 2016, 11, e0151041.	1.1	34
49	Role of BCL9L in transforming growth factor-β (TGF-β)-induced epithelial-to-mesenchymal-transition (EMT) and metastasis of pancreatic cancer. Oncotarget, 2016, 7, 73725-73738.	0.8	25
50	Abstract 2754: Antibody-based tools forin vitroand live cell analysis of endogenous PARP1, an essential human DNA repair enzyme. , 2016, , .		0
51	Real-time analysis of epithelial-mesenchymal transition using fluorescent single-domain antibodies. Scientific Reports, 2015, 5, 13402.	1.6	70
52	Live imaging of endogenous protein dynamics in zebrafish using chromobodies. Development (Cambridge), 2015, 142, 1879-1884.	1.2	79
53	Generation of an alpacaâ€derived nanobody recognizing γâ€H2AX. FEBS Open Bio, 2015, 5, 779-788.	1.0	19
54	An Intracellular Nanotrap Redirects Proteins and Organelles in Live Bacteria. MBio, 2015, 6, .	1.8	24

4

#	Article	IF	CITATIONS
55	<i>Tetra</i> -Substituted Pyridinylimidazoles As Dual Inhibitors of p38î± Mitogen-Activated Protein Kinase and c-Jun <i>N</i> -Terminal Kinase 3 for Potential Treatment of Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2015, 58, 443-456.	2.9	43
56	Monitoring Interactions and Dynamics of Endogenous Beta-catenin With Intracellular Nanobodies in Living Cells*. Molecular and Cellular Proteomics, 2015, 14, 707-723.	2.5	71
57	Towards multiplexed protein–protein interaction analysis using protein tag-specific nanobodies. Journal of Proteomics, 2015, 127, 289-299.	1.2	6
58	A versatile assay for RNA-binding proteins in living cells. Rna, 2014, 20, 721-731.	1.6	33
59	c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs. Nucleic Acids Research, 2014, 42, 3059-3072.	6.5	73
60	The Fluorescent Two-Hybrid Assay to Screen for Protein–Protein Interaction Inhibitors in Live Cells. Journal of Biomolecular Screening, 2014, 19, 516-525.	2.6	35
61	Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1933-1942.	1.1	70
62	A p38 Substrate-Specific MK2-EGFP Translocation Assay for Identification and Validation of New p38 Inhibitors in Living Cells: A Comprising Alternative for Acquisition of Cellular p38 Inhibition Data. PLoS ONE, 2014, 9, e95641.	1.1	7
63	The Fluorescent Two-Hybrid (F2H) Assay for Direct Analysis of Protein–Protein Interactions in Living Cells. Methods in Molecular Biology, 2012, 812, 275-282.	0.4	26
64	A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies. Archives of Biochemistry and Biophysics, 2012, 526, 114-123.	1.4	46
65	Fluorescent Protein Specific Nanotraps to Study Protein–Protein Interactions and Histone-Tail Peptide Binding. , 2012, 911, 475-483.		12
66	Case Study on Live Cell Apoptosis-Assay Using Lamin-Chromobody Cell-Lines for High-Content Analysis. Methods in Molecular Biology, 2012, 911, 569-575.	0.4	27
67	Direct and Dynamic Detection of HIV-1 in Living Cells. PLoS ONE, 2012, 7, e50026.	1.1	42
68	Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Core–Shell Mesoporous Silica. Advanced Healthcare Materials, 2012, 1, 316-320.	3.9	41
69	The Nucleoporin <scp>Nup</scp> 358/ <scp>Ran</scp> BP2 Promotes Nuclear Import in a Cargo―and Transport Receptorâ€6pecific Manner. Traffic, 2012, 13, 218-233.	1.3	71
70	Engineering antibodies and proteins for molecular in vivo imaging. Current Opinion in Biotechnology, 2011, 22, 882-887.	3.3	44
71	Magnetosome Expression of Functional Camelid Antibody Fragments (Nanobodies) in Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 2011, 77, 6165-6171.	1.4	63
72	Novel antibody derivatives for proteome and high-content analysis. Analytical and Bioanalytical Chemistry, 2010, 397, 3203-3208.	1.9	27

#	Article	IF	CITATIONS
73	Targeting of the prostacyclin specific IP1 receptor in lungs with molecular conjugates comprising prostaglandin I2 analogues. Biomaterials, 2010, 31, 2903-2911.	5.7	14
74	Modulation of protein properties in living cells using nanobodies. Nature Structural and Molecular Biology, 2010, 17, 133-138.	3.6	494
75	CpG-Methylation Regulates a Class of Epstein-Barr Virus Promoters. PLoS Pathogens, 2010, 6, e1001114.	2.1	96
76	Protein-binding assays in biological liquids using microscale thermophoresis. Nature Communications, 2010, 1, 100.	5.8	907
77	Top-Down <i>de Novo</i> Protein Sequencing of a 13.6 kDa Camelid Single Heavy Chain Antibody by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight/Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2010, 82, 3283-3292.	3.2	67
78	Dimerization of DNA methyltransferase 1 is mediated by its regulatory domain. Journal of Cellular Biochemistry, 2009, 106, 521-528.	1.2	40
79	Protein mislocalization in plant cells using a GFPâ€binding chromobody. Plant Journal, 2009, 60, 744-754.	2.8	51
80	Np95 interacts with <i>de novo</i> DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Reports, 2009, 10, 1259-1264.	2.0	167
81	Camelid immunoglobulins and nanobody technology. Veterinary Immunology and Immunopathology, 2009, 128, 178-183.	0.5	424
82	A Fluorescent Two-hybrid Assay for Direct Visualization of Protein Interactions in Living Cells. Molecular and Cellular Proteomics, 2008, 7, 2279-2287.	2.5	81
83	Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. Journal of Cell Biology, 2008, 183, 223-239.	2.3	404
84	A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins. Molecular and Cellular Proteomics, 2008, 7, 282-289.	2.5	616
85	Generation and Characterization of a Rat Monoclonal Antibody Specific for PCNA. Hybridoma, 2008, 27, 91-98.	0.5	14
86	MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Research, 2007, 35, 5402-5408.	6.5	137
87	Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Research, 2007, 35, 4301-4312.	6.5	200
88	DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. Journal of Cell Biology, 2007, 176, 565-571.	2.3	171
89	Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods, 2006, 3, 887-889.	9.0	613
90	Regulation of DNA methyltransferase 1. Advances in Enzyme Regulation, 2006, 46, 224-234.	2.9	17

#	Article	IF	CITATIONS
91	Differential recruitment of DNA Ligase I and III to DNA repair sites. Nucleic Acids Research, 2006, 34, 3523-3532.	6.5	88
92	Functional and Mutational Characterization of Human MIA40 Acting During Import into the Mitochondrial Intermembrane Space. Journal of Molecular Biology, 2005, 353, 517-528.	2.0	102
93	Organization and Function of the Small Tim Complexes Acting along the Import Pathway of Metabolite Carriers into Mammalian Mitochondria. Journal of Biological Chemistry, 2004, 279, 13540-13546.	1.6	43
94	The C66W Mutation in the Deafness Dystonia Peptide 1 (DDP1) Affects the Formation of Functional DDP1·TIM13 Complexes in the Mitochondrial Intermembrane Space. Journal of Biological Chemistry, 2002, 277, 23287-23293.	1.6	75
95	Role of the Deafness Dystonia Peptide 1 (DDP1) in Import of Human Tim23 into the Inner Membrane of Mitochondria. Journal of Biological Chemistry, 2001, 276, 37327-37334.	1.6	89
96	The role of the TIM8-13 complex in the import of Tim23 into mitochondria. EMBO Journal, 2000, 19, 6392-6400.	3.5	139
97	The mitochondrial TIM22 preprotein translocase is highly conserved throughout the eukaryotic kingdom. FEBS Letters, 1999, 464, 41-47.	1.3	75
98	Processing and Editing of Overlapping tRNAs in Human Mitochondria. Journal of Biological Chemistry, 1998, 273, 31977-31984.	1.6	46