Bart Hens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4421151/publications.pdf

Version: 2024-02-01

304368 264894 1,870 42 51 22 citations h-index g-index papers 52 52 52 2216 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Favipiravir at high doses has potent antiviral activity in SARS-CoV-2â^'infected hamsters, whereas hydroxychloroquine lacks activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26955-26965.	3.3	240
2	The mechanisms of pharmacokinetic food-drug interactions – A perspective from the UNGAP group. European Journal of Pharmaceutical Sciences, 2019, 134, 31-59.	1.9	224
3	A review of drug solubility in human intestinal fluids: Implications for the prediction of oral absorption. European Journal of Pharmaceutical Sciences, 2014, 57, 322-332.	1.9	159
4	Low Buffer Capacity and Alternating Motility along the Human Gastrointestinal Tract: Implications for <i>in Vivo</i> Dissolution and Absorption of Ionizable Drugs. Molecular Pharmaceutics, 2017, 14, 4281-4294.	2.3	94
5	Supersaturation and Precipitation of Posaconazole Upon Entry in the Upper Small Intestine in Humans. Journal of Pharmaceutical Sciences, 2016, 105, 2677-2684.	1.6	92
6	In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 70-83.	2.0	91
7	Gastrointestinal behavior of nano- and microsized fenofibrate: In vivo evaluation in man and in vitro simulation by assessment of the permeation potential. European Journal of Pharmaceutical Sciences, 2015, 77, 40-47.	1.9	82
8	Exploring gastrointestinal variables affecting drug and formulation behavior: Methodologies, challenges and opportunities. International Journal of Pharmaceutics, 2017, 519, 79-97.	2.6	81
9	Persistent Threats by Persistent Pollutants: Chemical Nature, Concerns and Future Policy Regarding PCBs—What Are We Heading For?. Toxics, 2018, 6, 1.	1.6	68
10	Gastrointestinal transfer: In vivo evaluation and implementation in in vitro and in silico predictive tools. European Journal of Pharmaceutical Sciences, 2014, 63, 233-242.	1.9	63
11	<i>In Silico</i> i> Modeling Approach for the Evaluation of Gastrointestinal Dissolution, Supersaturation, and Precipitation of Posaconazole. Molecular Pharmaceutics, 2017, 14, 4321-4333.	2.3	59
12	Supersaturation in human gastric fluids. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 184-189.	2.0	57
13	A Mechanistic Physiologically-Based Biopharmaceutics Modeling (PBBM) Approach to Assess the In Vivo Performance of an Orally Administered Drug Product: From IVIVC to IVIVP. Pharmaceutics, 2020, 12, 74.	2.0	49
14	Gastrointestinal and Systemic Monitoring of Posaconazole in Humans After Fasted and Fed State Administration of a Solid Dispersion. Journal of Pharmaceutical Sciences, 2016, 105, 2904-2912.	1.6	43
15	Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS) Tj ETQq1 1 Journal of Pharmaceutical Sciences, 2018, 115, 258-269.	0.784314 1.9	rgBT /Overl <mark>oc</mark> 43
16	Formulation predictive dissolution (fPD) testing to advance oral drug product development: An introduction to the US FDA funded $\hat{a} \in 21$ st Century BA/BE $\hat{a} \in \mathbb{Z}$ project. International Journal of Pharmaceutics, 2018, 548, 120-127.	2.6	41
17	Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids: Structural Analysis by Flow Field–Flow Fractionation/Multiangle Laser Light Scattering. Journal of Pharmaceutical Sciences, 2016, 105, 2832-2839.	1.6	36
18	Application of a Dynamic Fluid and pH Model to Simulate Intraluminal and Systemic Concentrations of a Weak Base in GastroPlusâ,,¢. Journal of Pharmaceutical Sciences, 2019, 108, 305-315.	1.6	32

#	Article	IF	CITATIONS
19	In vitro evaluation of the impact of gastrointestinal transfer on luminal performance of commercially available products of posaconazole and itraconazole using BioGIT. International Journal of Pharmaceutics, 2016, 515, 352-358.	2.6	29
20	Drug disposition before and after gastric bypass: fenofibrate and posaconazole. British Journal of Clinical Pharmacology, 2016, 82, 1325-1332.	1.1	24
21	Gastric emptying and intestinal appearance of nonabsorbable drugs phenol red and paromomycin in human subjects: A multi-compartment stomach approach. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 162-174.	2.0	24
22	Mass Transport Analysis of the Enhanced Buffer Capacity of the Bicarbonate–CO ₂ Buffer in a Phase-Heterogenous System: Physiological and Pharmaceutical Significance. Molecular Pharmaceutics, 2018, 15, 5291-5301.	2.3	23
23	Linking the Gastrointestinal Behavior of Ibuprofen with the Systemic Exposure between and within Humansâ€"Part 1: Fasted State Conditions. Molecular Pharmaceutics, 2018, 15, 5454-5467.	2.3	21
24	Integrating Drug- and Formulation-Related Properties With Gastrointestinal Tract Variability Using a Product-Specific Particle Size Approach: Case Example Ibuprofen. Journal of Pharmaceutical Sciences, 2019, 108, 3842-3847.	1.6	21
25	Measuring the Impact of Gastrointestinal Variables on the Systemic Outcome of Two Suspensions of Posaconazole by a PBPK Model. AAPS Journal, 2018, 20, 57.	2.2	19
26	Unraveling the behavior of oral drug products inside the human gastrointestinal tract using the aspiration technique: History, methodology and applications. European Journal of Pharmaceutical Sciences, 2020, 155, 105517.	1.9	18
27	Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses. Pharmaceutics, 2019, 11, 122.	2.0	17
28	Linking the Gastrointestinal Behavior of Ibuprofen with the Systemic Exposure between and within Humansâ€"Part 2: Fed State. Molecular Pharmaceutics, 2018, 15, 5468-5478.	2.3	12
29	Evaluation of real-life dosing of oral medicines with respect to fluid and food intake in a Dutch-speaking population. Journal of Clinical Pharmacy and Therapeutics, 2017, 42, 467-474.	0.7	11
30	Exploring the impact of real-life dosing conditions on intraluminal and systemic concentrations of atazanavir in parallel with gastric motility recording in healthy subjects. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 66-76.	2.0	11
31	Using Physiologically Based Pharmacokinetic Modeling to Assess the Risks of Failing Bioequivalence Criteria: a Tale of Two Ibuprofen Products. AAPS Journal, 2020, 22, 113.	2.2	9
32	Dissolution Challenges Associated with the Surface pH of Drug Particles: Integration into Mechanistic Oral Absorption Modeling. AAPS Journal, 2022, 24, 17.	2.2	9
33	What can we learn from 'dioxin incidents'?. International Journal of Environment and Pollution, 2016, 60, 34.	0.2	8
34	Translational Modeling Strategies for Orally Administered Drug Products: Academic, Industrial and Regulatory Perspectives. Pharmaceutical Research, 2020, 37, 95.	1.7	8
35	Application of the Gastrointestinal Simulator (GIS) Coupled with In Silico Modeling to Measure the Impact of Coca-Cola® on the Luminal and Systemic Behavior of Loratadine (BCS Class 2b). Pharmaceutics, 2020, 12, 566.	2.0	8
36	Measurement of fasted state gastric antral motility before and after a standard bioavailability and bioequivalence 240 mL drink of water: Validation of MRI method against concomitant perfused manometry in healthy participants. PLoS ONE, 2020, 15, e0241441.	1.1	8

#	Article	IF	CITATIONS
37	"Development of Fixed Dose Combination Products―Workshop Report: Considerations of Gastrointestinal Physiology and Overall Development Strategy. AAPS Journal, 2019, 21, 75.	2.2	7
38	An In Vivo Predictive Dissolution Methodology (iPD Methodology) with a BCS Class IIb Drug Can Predict the In Vivo Bioequivalence Results: Etoricoxib Products. Pharmaceutics, 2021, 13, 507.	2.0	7
39	Biopredictive in vitro testing methods to assess intestinal drug absorption from supersaturating dosage forms. Journal of Drug Delivery Science and Technology, 2020, 56, 101275.	1.4	6
40	Mechanistic Deconvolution of Oral Absorption Model with Dynamic Gastrointestinal Fluid to Predict Regional Rate and Extent of GI Drug Dissolution. AAPS Journal, 2020, 22, 3.	2.2	6
41	Exploring the Predictive Power of the $\langle i \rangle$ In Situ $\langle i \rangle$ Perfusion Technique towards Drug Absorption: Theory, Practice, and Applications. Molecular Pharmaceutics, 2022, 19, 749-762.	2.3	3
42	Exploring the Impact of Intestinal Fluid Components on the Solubility and Supersaturation of Danazol. Journal of Pharmaceutical Sciences, 2021, 110, 2479-2488.	1.6	2
43	Leveraging Oral Drug Development to a Next Level: Impact of the IMI-Funded OrBiTo Project on Patient Healthcare. Frontiers in Medicine, 2021, 8, 480706.	1.2	2
44	Summary of the In Vivo Predictive Dissolution (iPD) - Oral Drug Delivery (ODD) Conference 2018. Dissolution Technologies, 2018, 25, 50-53.	0.2	2
45	What can we learn from 'dioxin incidents'?. International Journal of Environment and Pollution, 2016, 60, 34.	0.2	1
46	Title is missing!. , 2020, 15, e0241441.		0
47	Title is missing!. , 2020, 15, e0241441.		O
48	Title is missing!. , 2020, 15, e0241441.		0
49	Title is missing!. , 2020, 15, e0241441.		O
50	Title is missing!. , 2020, 15, e0241441.		0
51	Title is missing!. , 2020, 15, e0241441.		0