Steven W Singer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4421079/publications.pdf

Version: 2024-02-01

101	7,295	40	80
papers	citations	h-index	g-index
110	110	110	8991 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Adaptive evolution of <i>Methylotuvimicrobium alcaliphilum</i> to grow in the presence of rhamnolipids improves fatty acid and rhamnolipid production from CH4. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	3.0	4
2	Complete Genome Sequences of Five Isolated Pseudomonas Strains that Catabolize Pentose Sugars and Aromatic Compounds Obtained from Lignocellulosic Biomass. Microbiology Resource Announcements, 2022, 11, e0098721.	0.6	4
3	Machine learning for metabolic engineering: A review. Metabolic Engineering, 2021, 63, 34-60.	7.0	135
4	Doing it alone: Unisexual reproduction in filamentous ascomycete fungi. Fungal Biology Reviews, 2021, 35, 1-13.	4.7	20
5	Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO2. Trends in Biotechnology, 2021, 39, 412-424.	9.3	77
6	A single-cell genomics pipeline for environmental microbial eukaryotes. IScience, 2021, 24, 102290.	4.1	7
7	Development of dualâ€inducible duetâ€expression vectors for tunable gene expression control and CRISPR interferenceâ€based gene repression in PseudomonasÂputida KT2440. Microbial Biotechnology, 2021, 14, 2659-2678.	4.2	10
8	Microbial production of advanced biofuels. Nature Reviews Microbiology, 2021, 19, 701-715.	28.6	126
9	The F-box protein gene $\langle i\rangle$ exo $\langle i\rangle$ - $\langle i\rangle$ 1 $\langle i\rangle$ is a target for reverse engineering enzyme hypersecretion in filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
10	CAZymes from the thermophilic fungus Thermoascus aurantiacus are induced by C5 and C6 sugars. Biotechnology for Biofuels, 2021, 14, 169.	6.2	6
11	Generation of $\langle i \rangle$ Pseudomonas putida $\langle i \rangle$ KT2440 Strains with Efficient Utilization of Xylose and Galactose via Adaptive Laboratory Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 11512-11523.	6.7	32
12	A new path for one-carbon conversion. Nature Metabolism, 2021, 3, 1286-1287.	11.9	0
13	Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME Journal, 2020, 14, 659-675.	9.8	69
14	Development of genetic tools for the thermophilic filamentous fungus Thermoascus aurantiacus. Biotechnology for Biofuels, 2020, 13, 167.	6.2	8
15	Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metabolic Engineering Communications, 2020, 11, e00143.	3.6	73
16	Generation of ionic liquid tolerant <i>Pseudomonas putida</i> KT2440 strains <i>via</i> adaptive laboratory evolution. Green Chemistry, 2020, 22, 5677-5690.	9.0	29
17	Whole-Genome Sequence of Brevibacillus borstelensis SDM, Isolated from a Sorghum-Adapted Microbial Community. Microbiology Resource Announcements, 2020, 9, .	0.6	10
18	Structural changes in bacterial and fungal soil microbiome components during biosolarization as related to volatile fatty acid accumulation. Applied Soil Ecology, 2020, 153, 103602.	4.3	10

#	Article	IF	CITATIONS
19	Construction of a novel dual-inducible duet-expression system for gene (over)expression in Pseudomonas putida. Plasmid, 2020, 110, 102514.	1.4	14
20	Purification and characterization of a native lytic polysaccharide monooxygenase from Thermoascus aurantiacus. Biotechnology Letters, 2020, 42, 1897-1905.	2.2	8
21	Response of <i>Pseudomonas putida</i> to Complex, Aromaticâ€Rich Fractions from Biomass. ChemSusChem, 2020, 13, 4455-4467.	6.8	23
22	Ethanol production in switchgrass hydrolysate by ionic liquid-tolerant yeasts. Bioresource Technology Reports, 2019, 7, 100275.	2.7	9
23	NaCl enhances Escherichia coli growth and isoprenol production in the presence of imidazolium-based ionic liquids. Bioresource Technology Reports, 2019, 6, 1-5.	2.7	8
24	Guanidine Riboswitch-Regulated Efflux Transporters Protect Bacteria against Ionic Liquid Toxicity. Journal of Bacteriology, 2019, 201, .	2.2	17
25	Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9062-9079.	6.7	89
26	Methyl ketone production by <i>Pseudomonas putida</i> is enhanced by plantâ€derived amino acids. Biotechnology and Bioengineering, 2019, 116, 1909-1922.	3.3	29
27	Large Circular Plasmids from Groundwater Plasmidomes Span Multiple Incompatibility Groups and Are Enriched in Multimetal Resistance Genes. MBio, 2019, 10, .	4.1	42
28	Assessment of biogas production and microbial ecology in a high solid anaerobic digestion of major California food processing residues. Bioresource Technology Reports, 2019, 5, 1-11.	2.7	24
29	Tolerance Characterization and Isoprenol Production of Adapted <i>Escherichia coli</i> in the Presence of Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 1457-1463.	6.7	10
30	Isolation and Characterization of Bacterial Cellulase Producers for Biomass Deconstruction: A Microbiology Laboratory Course. Journal of Microbiology and Biology Education, 2019, 20, .	1.0	5
31	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	7.3	185
32	A bacterial pioneer produces cellulase complexes that persist through community succession. Nature Microbiology, 2018, 3, 99-107.	13.3	38
33	Jungle Express is a versatile repressor system for tight transcriptional control. Nature Communications, 2018, 9, 3617.	12.8	33
34	Natural Variation in the Multidrug Efflux Pump <i>SGE1</i> Underlies Ionic Liquid Tolerance in Yeast. Genetics, 2018, 210, 219-234.	2.9	30
35	Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition. Process Biochemistry, 2017, 52, 214-222.	3.7	20
36	Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia. Trends in Microbiology, 2017, 25, 788-796.	7.7	59

#	Article	IF	Citations
37	Alteration of white-rot basidiomycetes cellulase and xylanase activities in the submerged co-cultivation and optimization of enzyme production by Irpex lacteus and Schizophyllum commune. Bioresource Technology, 2017, 241, 652-660.	9.6	25
38	Development and characterization of a thermophilic, lignin degrading microbiota. Process Biochemistry, 2017, 63, 193-203.	3.7	29
39	Comparison of soil biosolarization with mesophilic and thermophilic solid digestates on soil microbial quantity and diversity. Applied Soil Ecology, 2017, 119, 183-191.	4.3	18
40	Thermoascus aurantiacus is an Intriguing Host for the Industrial Production of Cellulases. Current Biotechnology, 2017, 6, 89-97.	0.4	20
41	Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger. PLoS ONE, 2017, 12, e0189604.	2.5	13
42	Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution. Microbial Cell Factories, 2017, 16, 204.	4.0	60
43	Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnology for Biofuels, 2017, 10, 241.	6.2	150
44	Xylose induces cellulase production in Thermoascus aurantiacus. Biotechnology for Biofuels, 2017, 10, 271.	6.2	24
45	Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage. Frontiers in Microbiology, 2016, 7, 238.	3.5	66
46	lonic Liquids Impact the Bioenergy Feedstock-Degrading Microbiome and Transcription of Enzymes Relevant to Polysaccharide Hydrolysis. MSystems, 2016, 1 , .	3.8	15
47	Enrichment of microbial communities tolerant to the ionic liquids tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate. Applied Microbiology and Biotechnology, 2016, 100, 5639-5652.	3.6	6
48	Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis. MBio, 2016, 7, .	4.1	17
49	lonic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts. Applied Microbiology and Biotechnology, 2016, 100, 10237-10249.	3.6	41
50	Transcriptomic analysis of the highly efficient oil-degrading bacterium <i>Acinetobacter venetianus</i> RAG-1 reveals genes important in dodecane uptake and utilization. FEMS Microbiology Letters, 2016, 363, fnw224.	1.8	14
51	The role of organic matter amendment level on soil heating, organic acid accumulation, and development of bacterial communities in solarized soil. Applied Soil Ecology, 2016, 106, 37-46.	4.3	48
52	MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 2016, 32, 605-607.	4.1	1,574
53	Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage. ISME Journal, 2016, 10, 833-845.	9.8	62
54	Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions. Biotechnology for Biofuels, 2015, 8, 206.	6.2	22

#	Article	IF	Citations
55	Genomic Analysis of Xylose Metabolism in Members of the Deinoccocus-Thermus Phylum from Thermophilic Biomass-Deconstructing Bacterial Consortia. Bioenergy Research, 2015, 8, 1031-1038.	3.9	4
56	Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME Journal, 2015, 9, 485-496.	9.8	69
57	Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw. Biotechnology for Biofuels, 2014, 7, 495.	6.2	40
58	Discovery of two novel \hat{l}^2 -glucosidases from an Amazon soil metagenomic library. FEMS Microbiology Letters, 2014, 351, 147-155.	1.8	25
59	An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nature Communications, 2014, 5, 3490.	12.8	85
60	<i>Bacillus coagulans</i> tolerance to 1â€ethylâ€3â€methylimidazoliumâ€based ionic liquids in aqueous and solidâ€state thermophilic culture. Biotechnology Progress, 2014, 30, 311-316.	2.6	19
61	Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS Yeast Research, 2014, 14, 1286-1294.	2.3	36
62	Characterization of bacterial communities in solarized soil amended with lignocellulosic organic matter. Applied Soil Ecology, 2014, 73, 97-104.	4.3	37
63	Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnology for Biofuels, 2014, 7, 15.	6.2	65
64	Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass. Applied and Environmental Microbiology, 2014, 80, 7423-7432.	3.1	27
65	MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome, 2014, 2, 26.	11.1	521
66	Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nature Communications, 2013, 4, 2120.	12.8	201
67	One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 2013, 15, 2579.	9.0	175
68	Development of a broad-host synthetic biology toolbox for ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microbial Cell Factories, 2013, 12, 107.	4.0	103
69	Functionalizing bacterial cell surfaces with a phage protein. Chemical Communications, 2013, 49, 910-912.	4.1	4
70	Draft Genome Sequence of an Oscillatorian Cyanobacterium, Strain ESFC-1. Genome Announcements, 2013, $1, \dots$	0.8	5
71	Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics. ISME Journal, 2013, 7, 817-829.	9.8	57
72	High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal \hat{l}^2 -glucosidase production. Frontiers in Microbiology, 2013, 4, 365.	3.5	11

#	Article	IF	CITATIONS
73	Community dynamics of celluloseâ€adapted thermophilic bacterial consortia. Environmental Microbiology, 2013, 15, 2573-2587.	3.8	77
74	Engineering of Ralstonia eutropha H16 for Autotrophic and Heterotrophic Production of Methyl Ketones. Applied and Environmental Microbiology, 2013, 79, 4433-4439.	3.1	139
75	Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass. PLoS ONE, 2013, 8, e68465.	2.5	62
76	Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses. PLoS ONE, 2013, 8, e77985.	2.5	50
77	Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. ISME Journal, 2012, 6, 1427-1439.	9.8	66
78	Metal Affinity Enrichment Increases the Range and Depth of Proteome Identification for Extracellular Microbial Proteins. Journal of Proteome Research, 2012, 11, 861-870.	3.7	1
79	Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnology for Biofuels, 2012, 5, 54.	6.2	88
80	Targeted Isolation of Proteins from Natural Microbial Communities Living in an Extreme Environment. Methods in Molecular Biology, 2012, 881, 63-72.	0.9	3
81	Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME Journal, 2012, 6, 863-874.	9.8	48
82	Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrassâ€adapted bacterial consortia. Biotechnology and Bioengineering, 2012, 109, 1140-1145.	3.3	17
83	A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels. PLoS ONE, 2012, 7, e37010.	2.5	98
84	Glycoside Hydrolase Activities of Thermophilic Bacterial Consortia Adapted to Switchgrass. Applied and Environmental Microbiology, 2011, 77, 5804-5812.	3.1	99
85	EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biology, 2011, 12, R44.	8.8	326
86	Bioenergy feedstockâ€specific enrichment of microbial populations during highâ€solids thermophilic deconstruction. Biotechnology and Bioengineering, 2011, 108, 2088-2098.	3.3	23
87	Chain mechanism for exchange of D2 with a ruthenium hydride. Chemical Communications, 2010, 46, 7915.	4.1	10
88	Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities. Bioenergy Research, 2010, 3, 146-158.	3.9	100
89	Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities. ISME Journal, 2010, 4, 1398-1409.	9.8	26
90	Computational Prediction and Experimental Validation of Signal Peptide Cleavages in the Extracellular Proteome of a Natural Microbial Community. Journal of Proteome Research, 2010, 9, 2148-2159.	3.7	17

#	Article	IF	CITATIONS
91	Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing â€∞ <i>Leptospirillum rubarum ⟨i⟩ ―(Group II) and â€∞ <i>Leptospirillum ferrodiazotrophum ⟨i⟩ ―(Group III) Bacteria in Acid Mine Drainage Biofilms. Applied and Environmental Microbiology, 2009, 75, 4599-4615.</i></i>	3.1	168
92	Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME Journal, 2008, 2, 542-550.	9.8	102
93	Characterization of Cytochrome 579, an Unusual Cytochrome Isolated from an Iron-Oxidizing Microbial Community. Applied and Environmental Microbiology, 2008, 74, 4454-4462.	3.1	66
94	CO-dependent H2 evolution by Rhodospirillum rubrum: Role of CODH:CooF complex. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1582-1591.	1.0	57
95	New insights into the mechanism of nickel insertion into carbon monoxide dehydrogenase: analysis of Rhodospirillum rubrum carbon monoxide dehydrogenase variants with substituted ligands to the [Fe3S4] portion of the active-site C-cluster. Journal of Biological Inorganic Chemistry, 2005, 10, 903-912.	2.6	31
96	Hydrogen Elimination from a Hydroxycyclopentadienyl Ruthenium(II) Hydride:Â Study of Hydrogen Activation in a Ligandâ^'Metal Bifunctional Hydrogenation Catalyst. Journal of the American Chemical Society, 2005, 127, 3100-3109.	13.7	160
97	Purification and Characterization of NafY (Apodinitrogenase Î ³ Subunit) from Azotobacter vinelandii. Journal of Biological Chemistry, 2004, 279, 19739-19746.	3.4	30
98	Protonated Aminocyclopentadienyl Ruthenium Hydride Reduction of Benzaldehyde and the Conversion of the Resulting Ruthenium Triflate to a Ruthenium Hydride with H2 and Base. Organometallics, 2002, 21, 5038-5046.	2.3	40
99	Hydrogen Transfer to Carbonyls and Imines from a Hydroxycyclopentadienyl Ruthenium Hydride:Â Evidence for Concerted Hydride and Proton Transfer. Journal of the American Chemical Society, 2001, 123, 1090-1100.	13.7	383
100	The role of a hydroxycyclopentadienyl ruthenium dicarbonyl formate in formic acid reductions of carbonyl compounds catalyzed by Shvo's diruthenium catalyst. Canadian Journal of Chemistry, 2001, 79, 1002-1011.	1.1	26
101	Revisiting Theoretical Tools and Approaches for the Valorization of Recalcitrant Lignocellulosic Biomass to Value-Added Chemicals. Frontiers in Energy Research, 0, 10, .	2.3	9