Sourindra Mahanty

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4421022/sourindra-mahanty-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65
papers

2,416
citations

h-index

48
g-index

65
ext. papers

2,679
ext. citations

4.7
avg, IF

L-index

#	Paper	IF	Citations
65	Hollow-porous nanospheres of ZnMn2O4 spinel: A high energy density cathode for rechargeable aqueous battery. <i>Materials Chemistry and Physics</i> , 2021 , 263, 124373	4.4	6
64	I Otton-ball haped porous iron-nickel sulfide: A high-rate cathode for long-life aqueous rechargeable battery. <i>Materials Research Bulletin</i> , 2021 , 140, 111307	5.1	1
63	Carbon@carbon double hollow spheres as efficient cathode host for high rate LiS battery. <i>Materials Chemistry and Physics</i> , 2019 , 225, 309-315	4.4	5
62	Bi-metal organic framework derived nickel manganese oxide spinel for lithium-ion battery anode. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2018 , 229, 27-36	3.1	37
61	High faradaic charge storage in ZnCo2S4 film on Ni-foam with a hetero-dimensional microstructure for hybrid supercapacitor. <i>Materials Today Energy</i> , 2018 , 9, 416-427	7	41
60	Influence of CB interactions on the electrochemical performance of LOOH functionalized MWCNT/S composites as lithium-sulfur battery cathode. <i>Journal of Chemical Sciences</i> , 2018 , 130, 1	1.8	2
59	CeO2@C derived from benzene carboxylate bridged metalBrganic frameworks: ligand induced morphology evolution and influence on the electrochemical properties as a lithium-ion battery anode. Sustainable Energy and Fuels, 2017, 1, 288-298	5.8	19
58	Green Synthesis of Electrospun Porous Carbon Nanofibers from Sucrose and Doping of Ag Nanoparticle with Improved Electrical and Electrochemical Properties. <i>ChemistrySelect</i> , 2017 , 2, 2265-2	2 7 8	12
57	A facile method for the synthesis of a C@MoO2 hollow yolkEhell structure and its electrochemical properties as a faradaic electrode. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1585-1593	7.8	21
56	In Situ Mg/MgO-Embedded Mesoporous Carbon Derived from Magnesium 1,4-Benzenedicarboxylate Metal Organic Framework as Sustainable Li-S Battery Cathode Support. <i>ACS Omega</i> , 2017 , 2, 6481-6491	3.9	29
55	TiO2-rGO nanocomposite hollow spheres: large scale synthesis and application as an efficient anode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23853-23862	13	48
54	Redox-active organic molecular salt of 1,2,4-benzenetricarboxylic acid as lithium-ion battery anode. <i>Materials Letters</i> , 2017 , 209, 613-617	3.3	8
53	Rock-Salt-Templated Mn3O4 Nanoparticles Encapsulated in a Mesoporous 2D Carbon Matrix: A High Rate 2 V Anode for Lithium-Ion Batteries with Extraordinary Cycling Stability. <i>ChemistrySelect</i> , 2017 , 2, 7854-7864	1.8	8
52	A comparative property investigation of lithium phosphate glass melted in microwave and conventional heating. <i>Bulletin of Materials Science</i> , 2017 , 40, 999-1006	1.7	3
51	Large-scale synthesis of porous NiCo2O4 and rGONiCo2O4 hollow-spheres with superior electrochemical performance as a faradaic electrode. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16854-1	6864	60
50	Superior lithium storage properties of Fe2(MoO4)3/MWCNT composite with a nanoparticle (0D)Banorod (1D) hetero-dimensional morphology. <i>Chemical Engineering Journal</i> , 2017 , 307, 239-248	14.7	21
49	Electrospun TiO2EGO Composite Nanofibers with Ordered Mesopores by Molecular Level Assembly: A High Performance Anode Material for Lithium-Ion Batteries. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600761	4.6	32

(2013-2016)

48	Core-double shell ZnO/ZnS@Co3O4 heterostructure as high performance pseudocapacitor. <i>Dalton Transactions</i> , 2016 , 45, 9103-12	4.3	12
47	Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metalBrganic framework. <i>CrystEngComm</i> , 2016 , 18, 450-461	3.3	66
46	Cu 3 (1,3,5-benzenetricarboxylate) 2 metal-organic framework: A promising anode material for lithium-ion battery. <i>Microporous and Mesoporous Materials</i> , 2016 , 226, 353-359	5.3	103
45	Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte. <i>Journal of Colloid and Interface Science</i> , 2016 , 464, 73-82	9.3	42
44	High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	22
43	Carbon Doped MnCo2S4 Microcubes Grown on Ni foam as High Energy Density Faradaic Electrode. <i>Electrochimica Acta</i> , 2016 , 213, 672-679	6.7	62
42	Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance. <i>ACS Applied Materials & Description of the Communication of the </i>	9.5	220
41	Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor. <i>Dalton Transactions</i> , 2015 , 44, 14604-12	4.3	64
40	Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO2 hollow spheres as electrochemical supercapacitor. <i>RSC Advances</i> , 2015 , 5, 41617-41626	3.7	45
39	Generalized synthesis and evaluation of formation mechanism of metal oxide/sulphide@C hollow spheres. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20297-20304	13	15
38	Low-temperature surfactant-free synthesis of tin oxide-reduced graphene oxide nanocomposites and their textural property-dependent lithium storage characteristics. <i>Journal of Sol-Gel Science and Technology</i> , 2015 , 76, 402-413	2.3	8
37	Tungsten disulfide-multiwalled carbon nanotube hybrid anode for lithium-ion battery. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 3758-64	1.3	13
36	Morphology-mediated tailoring of the performance of porous nanostructured Mn2O3 as an anode material. <i>CrystEngComm</i> , 2014 , 16, 10560-10568	3.3	32
35	Metal hydroxides as a conversion electrode for lithium-ion batteries: a case study with a Cu(OH)2 nanoflower array. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18515-18522	13	31
34	Interconnected network of MnO2 nanowires with a "cocoonlike" morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. <i>ACS Applied Materials & Discours amp; Interfaces</i> , 2014 , 6, 10754-62	9.5	128
33	Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. <i>Chemical Communications</i> , 2014 , 50, 11717-20	5.8	160
32	3D Hierarchically Assembled Porous Wrinkled-Paper-like Structure of ZnCo2O4 and [email[protected] as Anode Materials for Lithium-Ion Batteries. <i>Crystal Growth and Design</i> , 2014 , 14, 33	52-335	 59 ⁴¹
31	An alternative hydrolytic synthesis route for uniform metal selenide nanoparticles. <i>RSC Advances</i> , 2013 , 3, 16322	3.7	_

30	TiS2MWCNT hybrid as high performance anode in lithium-ion battery. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	33
29	MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. <i>Chemical Communications</i> , 2013 , 49, 1823-5	5.8	216
28	LiSb3O8 as a Prospective Anode Material for Lithium-ion Battery. <i>International Journal of Applied Ceramic Technology</i> , 2012 , 9, 876-880	2	7
27	Lithium hexaoxo antimonate as an anode for lithium-ion battery. <i>Nanomaterials and Energy</i> , 2012 , 1, 51-56	1.1	
26	Improved electrochemical performance of natural honeycomb templated LiSbO3 as an anode in lithium-ion battery. <i>Materials Chemistry and Physics</i> , 2011 , 130, 20-23	4.4	12
25	Li3SbO4: A new high rate anode material for lithium-ion batteries. <i>Materials Letters</i> , 2011 , 65, 1105-110	073.3	16
24	Li4Ti5O12/Li3SbO4/C composite anode for high rate lithium-ion batteries. <i>Materials Letters</i> , 2011 , 65, 3083-3085	3.3	13
23	Lithium antimonite: A new class of anode material for lithium-ion battery. <i>Electrochemistry Communications</i> , 2009 , 11, 1389-1392	5.1	17
22	Multi-faceted highly crystalline LiMn2O4 and LiNi0.5Mn1.5O4 cathodes synthesized by a novel carbon exo-templating method. <i>Solid State Ionics</i> , 2009 , 180, 1261-1266	3.3	12
21	Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method. <i>Journal of Power Sources</i> , 2009 , 192, 618-626	8.9	33
20	Lanthanum-doped LiCoO2 cathode with high rate capability. <i>Electrochimica Acta</i> , 2009 , 54, 1654-1661	6.7	47
19	Filter paper templated interconnected nanocrystalline LiMn2O4 with high coulombic efficiency and rate capability. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6161		26
18	Improved Electrochemical Performance of Li[sub 2]MnSiO[sub 4]/C Composite Synthesized by Combustion Technique. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A677	3.9	45
17	Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique. <i>Journal of Alloys and Compounds</i> , 2009 , 468, 258-262	5.7	66
16	Effect of silver addition on the properties of combustion synthesized nanocrystalline LiCoO2. <i>Materials Chemistry and Physics</i> , 2008 , 110, 406-410	4.4	29
15	Development and characterizations of BaOffaOAl2O3BiO2 glassfleramic sealants for intermediate temperature solid oxide fuel cell application. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 4081-4088	3.9	55
14	Alanine Assisted Low-Temperature Synthesis and Characterization of Nanocrystalline SOFC Cathodes. <i>ECS Transactions</i> , 2007 , 7, 1129-1138	1	4
13	Alanine-assisted low-temperature combustion synthesis of nanocrystalline LiMn2O4 for lithium-ion batteries. <i>Materials Research Bulletin</i> , 2007 , 42, 1499-1506	5.1	32

LIST OF PUBLICATIONS

12	Structure and optical absorption of combustion-synthesized nanocrystalline LiCoO2. <i>Journal of Materials Research</i> , 2007 , 22, 1162-1167	2.5	28
11	Investigation on solgel synthesized Ag-doped TiO2 cermet thin films. <i>Thin Solid Films</i> , 2005 , 474, 245-2	! 49 .2	114
10	Effect of Sn doping on the structural and optical properties of solgel TiO2 thin films. <i>Journal of Crystal Growth</i> , 2004 , 261, 77-81	1.6	81
9	Ti/Ni/Ti/Au ohmic contact to n-type 6H-SiC. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 98, 177-180	3.1	9
8	Growth of GaN layer by metal-organic chemical vapor deposition system with a novel three-flow reactor. <i>Journal of Crystal Growth</i> , 2000 , 218, 148-154	1.6	3
7	Determination of interference-free optical constants of thin films. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 68, 72-75	3.1	6
6	V-shaped defects in InGaN/GaN multiquantum wells. <i>Materials Letters</i> , 1999 , 41, 67-71	3.3	44
5	Comparison and Investigation of Ohmic Characteristics in the Ni/AuZn and Cr/AuZn Metal Schemes. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, 4667-4671	1.4	6
4	A computation program for the calculation of optical constants of solids from reflectance data analysis. <i>Journal of Physics and Chemistry of Solids</i> , 1992 , 53, 1143-1145	3.9	3
3	Preparation and optical studies of polycrystalline Bi2WO6. <i>Materials Letters</i> , 1991 , 11, 254-256	3.3	13
2	Phase-transition studies on copper ferrite. <i>Materials Research Bulletin</i> , 1987 , 22, 1665-1675	5.1	26
1	Efficient energy storage in mustard husk derived porous spherical carbon nanostructures. <i>Materials Advances</i> ,	3.3	3