Wing Man Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4421019/publications.pdf

Version: 2024-02-01

331670 144013 3,485 124 21 57 citations h-index g-index papers 125 125 125 6257 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Universal energy-level alignment of molecules on metal oxides. Nature Materials, 2012, 11, 76-81.	27.5	836
2	Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies. Advanced Functional Materials, 2012, 22, 4557-4568.	14.9	694
3	Metal/Metalâ€Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO ₃ . Advanced Functional Materials, 2013, 23, 215-226.	14.9	326
4	Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films. Journal of Physical Chemistry C, 2010, 114, 19777-19781.	3.1	176
5	Work function of fluorine doped tin oxide. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	163
6	High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy, 2015, 11, 662-670.	16.0	134
7	A metallic molybdenum suboxide buffer layer for organic electronic devices. Applied Physics Letters, 2010, 96, .	3.3	82
8	Aqueous Manganese Dioxide Ink for Paperâ€Based Capacitive Energy Storage Devices. Angewandte Chemie - International Edition, 2015, 54, 6800-6803.	13.8	69
9	Highly flexible and transferable supercapacitors with ordered three-dimensional MnO ₂ /Au/MnO ₂ nanospike arrays. Journal of Materials Chemistry A, 2015, 3, 10199-10204.	10.3	53
10	Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Advances, 2018, 8, 5189-5196.	3 . 6	51
11	Effects of Ta incorporation in La2O3 gate dielectric of InGaZnO thin-film transistor. Applied Physics Letters, 2014, 104, .	3.3	45
12	Controllable functionalized carbon fabric for high-performance all-carbon-based supercapacitors. RSC Advances, 2014, 4, 33022.	3.6	40
13	Improved performance of asymmetric fiber-based micro-supercapacitors using carbon nanoparticles for flexible energy storage. Journal of Materials Chemistry A, 2015, 3, 15633-15641.	10.3	33
14	Suppressing the Coffee-Ring Effect in Semitransparent MnO ₂ Film for a High-Performance Solar-Powered Energy Storage Window. ACS Applied Materials & Solar-Powered Energy Storage Window.	8.0	26
15	High-mobility pentacene thin-film transistor by using LaxTa($1\hat{a}^{2}$ x)Oy as gate dielectric. Organic Electronics, 2014, 15, 2499-2504.	2.6	25
16	Effects of UV-ozone treatment on radio-frequency magnetron sputtered ZnO thin films. Thin Solid Films, 2011, 520, 569-573.	1.8	24
17	Advances in La-Based High-k Dielectrics for MOS Applications. Coatings, 2019, 9, 217.	2.6	24
18	High-performance organic thin-film transistor by using LaNbO as gate dielectric. Applied Physics Letters, 2015, 107, .	3.3	23

#	Article	IF	CITATIONS
19	Few-Layered MoS ₂ Field-Effect Transistors with a Vertical Channel of Sub-10 nm. ACS Applied Materials & Description (2008) Applied Materials & Description (2009) A	8.0	23
20	Improved Electrical Performance of Multilayer MoS ₂ Transistor With NH ₃ -Annealed ALD HfTiO Gate Dielectric. IEEE Transactions on Electron Devices, 2017, 64, 1020-1025.	3.0	22
21	A Study on Pentacene Organic Thin-Film Transistor With Different Gate Materials on Various Substrates. IEEE Electron Device Letters, 2017, 38, 744-747.	3.9	21
22	High-Mobility Pentacene Organic Thin-Film Transistor with La _{<italic>x</italic>} Nb _(1–<italic>x</italic>) O _{<italic>Dielectric Fabricated on Vacuum Tape. IEEE Transactions on Electron Devices, 2017, 64, 1716-1722.}	;y&støitalic	:>tgG
23	Influence of Gate Doping Concentration on the Characteristics of Amorphous InGaZnO Thin-Film Transistors With HfLaO Gate Dielectric. IEEE Electron Device Letters, 2019, 40, 1953-1956.	3.9	18
24	A Study on La Incorporation in Transition-Metal (Y, Zr, and Nb) Oxides as Gate Dielectric of Pentacene Organic Thin-Film Transistor. IEEE Transactions on Electron Devices, 2015, 62, 2313-2319.	3.0	17
25	Correlation between carrier mobility of pentacene thin-film transistor and surface passivation of its gate dielectric. Journal of Applied Physics, 2008, 104, .	2.5	16
26	Nitrided HfTiON/Ga ₂ O ₃ (Gd ₂ O ₃) as stacked gate dielectric for GaAs MOS applications. Applied Physics Express, 2014, 7, 061201.	2.4	15
27	High-Performance Pentacene Thin-Film Transistor With High-\$kappa\$ HfLaON as Gate Dielectric. IEEE Electron Device Letters, 2013, 34, 1397-1399.	3.9	13
28	On the voltage dependence of sensitivity for Schottky-type gas sensor. Applied Physics Letters, 2014, 105, 223503.	3.3	13
29	Improved Characteristics of InGaZnO Thin-Film Transistor by Using Fluorine Implant. ECS Solid State Letters, 2014, 3, P87-P90.	1.4	13
30	Improved Interfacial and Electrical Properties of GaAs MOS Capacitor With LaON/TiON Multilayer Composite Gate Dielectric and LaON as Interfacial Passivation Layer. IEEE Transactions on Electron Devices, 2017, 64, 1535-1540.	3.0	13
31	High-performance pentacene OTFT by incorporating Ti in LaON gate dielectric. Applied Physics Letters, 2017, 111, .	3.3	13
32	Working Principle of Hydrogen Sensor Based on Pentacene Thin-Film Transistor. IEEE Electron Device Letters, 2017, 38, 1132-1135.	3.9	13
33	Effects of Metal-Hydroxyl and InO _{<italic>x</italic>} Defects on Performance of InGaZnO Thin-Film Transistor. IEEE Transactions on Electron Devices, 2018, 65, 1009-1013.	3.0	13
34	Effects of Gate Electron Concentration on the Performance of Pentacene Organic Thin-Film Transistors. IEEE Electron Device Letters, 2018, 39, 963-966.	3.9	13
35	Improved interfacial quality of GaAs metal-oxide-semiconductor device with NH3-plasma treated yittrium-oxynitride as interfacial passivation layer. Microelectronics Reliability, 2016, 56, 17-21.	1.7	12
36	Enhanced hydrogen-sensing characteristics of MISiC Schottky-diode hydrogen sensor by trichloroethylene oxidation. Sensors and Actuators A: Physical, 2005, 119, 63-67.	4.1	11

#	Article	IF	Citations
37	Effects of N2-annealing conditions on the sensing properties of Pt/HfO2/SiC Schottky-diode hydrogen sensor. Thin Solid Films, 2010, 519, 505-511.	1.8	11
38	Plasma-Nitrided Ga ₂ O ₃ (Gd ₂ O ₃) as Interfacial Passivation Layer for InGaAs Metal–Oxide– Semiconductor Capacitor With HfTiON Gate Dielectric. IEEE Transactions on Electron Devices, 2015, 62, 1235-1240.	3.0	11
39	Effects of annealing on electrical performance of multilayer MoS2transistors with atomic layer deposited HfO2gate dielectric. Applied Physics Express, 2016, 9, 095202.	2.4	11
40	Schottky-diode hydrogen sensor based on InGaN/GaN multiple quantum wells. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 011212.	1.2	10
41	Influences of Remote Coulomb and Interface-Roughness Scatterings on Electron Mobility of InGaAs <italic> n</italic> MOSFET With High- <italic>k</italic> Stacked Gate Dielectric. IEEE Nanotechnology Magazine, 2015, 14, 854-861.	2.0	10
42	A comparative study of Hf and Ta incorporations in the dielectric of Pd-WO3-SiC Schottky-diode hydrogen sensor. Sensors and Actuators B: Chemical, 2018, 259, 725-729.	7.8	10
43	Gate Screening on Remote Phonon Scattering for Pentacene Organic TFTs: Holes Versus Electrons. IEEE Electron Device Letters, 2019, 40, 893-896.	3.9	10
44	High-mobility pentacene organic thin-film transistors achieved by reducing remote phonon scattering and surface-roughness scattering. Applied Surface Science, 2021, 544, 148656.	6.1	10
45	Improved sensing characteristics of MISiC Schottky-diode hydrogen sensor by using HfO2 as gate insulator. Microelectronics Reliability, 2008, 48, 1780-1785.	1.7	9
46	Effects of interfacial oxide layers of the electrode metals on the electrical characteristics of organic thin-film transistors with HfO2 gate dielectric. Journal of Applied Physics, 2011, 110, 044108.	2.5	9
47	Improved interfacial and electrical properties of HfLaON gate dielectric Ge MOS capacitor by NbON/Si dual passivation layer and fluorine incorporation. Applied Physics Letters, 2016, 109, .	3.3	9
48	GaAs Metal–Oxide–Semiconductor Capacitor With Nd-Based High-k Oxynitrides as Gate Dielectric and Passivation Layer. IEEE Transactions on Electron Devices, 2018, 65, 72-78.	3.0	9
49	Effects of Trapped Charges in Gate Dielectric and High-<inline-formula> <tex-math notation="LaTeX">\${k}\$ </tex-math> </inline-formula> Encapsulation on Performance of MoS ₂ Transistor. IEEE Transactions on Electron Devices, 2019, 66, 1107-1112.	3.0	9
50	Reduced screening of remote phonon scattering in thin-film transistors caused by gate-electrode/gate-dielectric interlayer. Applied Physics Letters, 2020, 117, .	3.3	9
51	Determination of optimal insulator thickness for MISiC hydrogen sensors. Solid-State Electronics, 2004, 48, 1673-1677.	1.4	8
52	Enhanced Sensing Performance of MISiC Schottky-Diode Hydrogen Sensor by Using HfON as Gate Insulator. IEEE Sensors Journal, 2011, 11, 2940-2946.	4.7	8
53	UV ozone passivation of the metal/dielectric interface for HfO2-based organic thin film transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1100-1103.	1.2	7
54	Electrical and Interfacial Properties of GaAs MOS Capacitors With La-Doped ZrON as Interfacial Passivation Layer. IEEE Transactions on Electron Devices, 2017, 64, 2179-2184.	3.0	7

#	Article	IF	CITATIONS
55	Improved Sensing Characteristics of a Novel \$hbox{Pt} hbox{/HfTiO}_{2}hbox{/SiC}\$ Schottky-Diode Hydrogen Sensor. IEEE Transactions on Electron Devices, 2012, 59, 2818-2824.	3.0	6
56	Interfacial and electrical properties of InGaAs metal-oxide-semiconductor capacitor with TiON/TaON multilayer composite gate dielectric. Applied Physics Letters, 2015, 106, 123504.	3.3	6
57	Improved performance of Pd/WO3/SiC Schottky-diode hydrogen gas sensor by using fluorine plasma treatment. Applied Physics Letters, 2015, 107, .	3.3	6
58	Impact of Nitrogen Incorporation on the Interface Between Ge and La ₂ O ₃ or Y ₂ O ₃ Gate Dielectric: A Study on the Formation of Germanate. IEEE Transactions on Electron Devices, 2016, 63, 4888-4892.	3.0	6
59	N ₂ -Plasma-Treated Ga ₂ O ₃ (Gd ₂ O ₃) as Interface Passivation Layer for Ge MOS Capacitor With HfTiON Gate Dielectric. IEEE Transactions on Electron Devices, 2016, 63, 2838-2843.	3.0	6
60	Highâ€Performance Pentacene Organic Thinâ€Film Transistor by Using Nd ₂ O ₃ Gate Dielectric Doped with Nb. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700609.	1.8	6
61	A Study on Organic Thin-Film Transistors Using Hf–La Oxides With Different La Contents as Gate Dielectrics. IEEE Transactions on Electron Devices, 2018, 65, 1107-1112.	3.0	6
62	Double-Layer MnCo ₂ S ₄ @Ni-Co-S Core/Shell Nanostructure on Nickel Foam for High-Performance Supercapacitor. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800147.	1.8	6
63	Effects of a Gate-Electrode/Gate-Dielectric Interlayer on Carrier Mobility for Pentacene Organic Thin-Film Transistors. IEEE Electron Device Letters, 2018, 39, 1516-1519.	3.9	6
64	Simulation Study of 4H-SiC High-k Pillar MOSFET With Integrated Schottky Barrier Diode. IEEE Journal of the Electron Devices Society, 2021, 9, 951-957.	2.1	6
65	Split-Drain Magnetic Field-Effect Transistor Channel Charge Trapping and Stress Induced Sensitivity Deterioration. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	5
66	Improved interfacial and electrical properties of Ge MOS capacitor by using TaON/LaON dual passivation interlayer. Applied Physics Letters, 2016, 109, .	3.3	5
67	Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor by Using TaYON Interfacial Passivation Layer and Fluorine Incorporation. IEEE Transactions on Electron Devices, 2017, 64, 3528-3533.	3.0	5
68	Plasmon-phonon resonance at gate-electrode/gate-dielectric interface on carrier mobility of organic TFTs with high-k gate dielectrics. Applied Surface Science, 2021, 565, 150374.	6.1	5
69	A Comparison of MISiC Schottky-Diode Hydrogen Sensors Made by NO,\$hboxN_2hboxO\$, or\$hboxNH_3\$Nitridations. IEEE Transactions on Electron Devices, 2006, 53, 2378-2383.	3.0	4
70	Equivalent distributed capacitance model of oxide traps on frequency dispersion of < i>C < /i> $\hat{a} \in \text{``i} \times \text{`i}$ curve for MOS capacitors. Chinese Physics B, 2016, 25, 118502.	1.4	4
71	Hydrogen sensor based on pentacene thin-film transistor. , 2016, , .		4
72	Improved Interfacial and Electrical Properties of GaAs Metal–Oxide–Semiconductor Capacitor by Using Fluorine-Plasma-Treated Interfacial Passivation Layer. IEEE Transactions on Device and Materials Reliability, 2017, 17, 458-462.	2.0	4

#	Article	IF	Citations
73	Repair of Oxygen Vacancies and Improvement of HfO ₂ /MoS ₂ Interface by NH ₃ -Plasma Treatment. IEEE Transactions on Electron Devices, 2019, 66, 4337-4342.	3.0	4
74	Improved Interfacial and Electrical Properties of MoS2 Transistor With High/Low-Temperature Grown Hf0.5Al0.5O as Top-Gate Dielectric. IEEE Electron Device Letters, 2020, 41, 385-388.	3.9	4
75	Enhanced screening on remote phonon scattering in InGaZnO thin-film transistor by using Ge gate electrode. Journal of Applied Physics, 2021, 130, .	2.5	4
76	Anti-Screening Effect of Gate-Electrode Holes on Remote Phonon Scattering in InGaZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2022, 69, 174-179.	3.0	4
77	Low-Temperature-Processed High-Performance Pentacene OTFTs with Optimal Nd-Ti Oxynitride Mixture as Gate Dielectric. Materials, 2022, 15, 2255.	2.9	4
78	Effects of Annealing Time on the Performance of OTFT on Glass with ZrO2as Gate Dielectric. Active and Passive Electronic Components, 2012, 2012, 1-5.	0.3	3
79	Comparison of CuPc-based organic thin-film transistors made by different dielectric structures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 012201.	1.2	3
80	High-mobility pentacene OTFT with TaLaO gate dielectric passivated by fluorine plasma. Physica Status Solidi - Rapid Research Letters, 2014, 8, 866-870.	2.4	3
81	Analytical modeling of nonideal Schottky diode with series and shunt resistance and application in hydrogen gas sensors. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2764-2768.	1.8	3
82	Improved interfacial and electrical properties of Ge MOS capacitor with ZrON/TaON multilayer composite gate dielectric by using fluorinated Si passivation layer. Applied Physics Letters, 2017, 111, 053501.	3.3	3
83	Fabrication and electrical performance of CVD-grown MoS2 transistor. , 2017, , .		3
84	Hydrogen sensors based on TFT's with catalytic source/drain electrodes: IGZO vs. pentacene. IEEE Electron Device Letters, 2018, , 1-1.	3.9	3
85	Temperature Dependence of Sensing Characteristics for OTFT-Based Hydrogen Sensor. IEEE Transactions on Electron Devices, 2020, 67, 1776-1780.	3.0	3
86	Dependence of sensing performance of OTFT-based H2 sensor on channel length. International Journal of Hydrogen Energy, 2021, 46, 16232-16240.	7.1	3
87	Sensing characteristics of a novel MISiC Schottky-diode hydrogen sensor with HfO <inf>2</inf> as gate insulator., 2007,,.		2
88	Pentacene thin-film transistors with HfO < inf>2 < / inf> gate dielectric annealed in NH < inf>3 < / inf> or N < inf>2 < / inf>O. , 2008, , .		2
89	A novel hydrogen sensor based on Pt/WO <inf>3</inf> /Si MIS Schottky diode. , 2013, , .		2
90	Thermal stability of sectorial split-drain magnetic field-effect transistors. Microelectronics Reliability, 2014, 54, 1115-1118.	1.7	2

#	Article	IF	Citations
91	Pentacene organic thinâ€film transistor with HfYO gate dielectric made on adhesive vacuum tape. Electronics Letters, 2015, 51, 644-646.	1.0	2
92	Interfacial and Electrical Properties of Ge MOS Capacitor by ZrLaON Passivation Layer and Fluorine Incorporation. IOP Conference Series: Materials Science and Engineering, 2017, 229, 012018.	0.6	2
93	Effects of Catalyticâ€Electrode Thickness on a Hydrogen Sensor Based on Organic Thinâ€Film Transistor. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700786.	1.8	2
94	Hydrogen Sensor Based on Pentacene Organic Thin-Film Transistor for Flexible Applications., 2018,,.		2
95	Flexible Solid-state Supercapacitors Using Paper-based Electrodes for Energy Storage., 2018, , .		2
96	Surface Passivation Using Lanthanide Oxynitrides for GaAs Metal–Oxide–Semiconductor Applications. IEEE Transactions on Electron Devices, 2019, 66, 3080-3085.	3.0	2
97	Influence of Source/Drain Catalytic Metal and Fabrication Method on OTFT-Based Hydrogen Sensor. IEEE Transactions on Electron Devices, 2022, 69, 2038-2042.	3.0	2
98	Improved Performance for OTFT with HfTiO <inf>2</inf> as gate dielectric by N <inf>2</inf> O annealing., 2007,,.		1
99	Electrode effects on the breakdown characteristics of high-k HfO. , 2010, , .		1
100	Improved hydrogen-sensing performance of Pd/WO <inf>3</inf> /SiC Schottky diode by La doping. , 2016, , .		1
101	Improved characteristics for OTFT with HfO<inf>2</inf> gate dielectric by using chlorinated indium tin oxide gate electrode. , 2016 , , .		1
102	A 2-D analytical threshold-voltage model for GeOI/GeON MOSFET with high-k gate dielectric. Microelectronics Reliability, 2016, 57, 24-33.	1.7	1
103	Effective passivation of HfO ₂ /Ge interface by using nitrided germanate as passivation interlayer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600974.	1.8	1
104	Improved performance of pentacene OTFT by incorporating Ti in NdON gate dielectric., 2017,,.		1
105	Improved carrier mobility of pentacene organic TFTs by suppressed oxide growth at remote interface using nitrogen doping in high-k NdNbO dielectric. Organic Electronics, 2022, 102, 106427.	2.6	1
106	Sensing characteristics of a novel NH/sub 3/-nitrided Schottky-diode hydrogen sensor. , 2004, , .		0
107	Effects of gate-insulator nitridation gas on MISiC Schottky-diode hydrogen sensors. , 0, , .		0
108	Effects of annealing temperature on sensing properties of Pt/HfO <inf>2</inf> /SiC Schottky-diode hydrogen sensor. , 2008, , .		0

#	Article	IF	CITATIONS
109	Effects of Insulator Thickness on the Sensing Properties of MISiC Schottky-Diode Hydrogen Sensor. , 2008, , .		O
110	Enhanced performance for OTFT on glass with HfO <inf>2</inf> as gate dielectric by UV-ozone treatment. , 2009, , .		0
111	Effects of different Ar/O <inf>2</inf> ratios on the electrical properties of CuPc-based TFTs with ZrO <inf>2</inf> gate dielectric., 2011, , .		O
112	Electrical properties of CuPc-based OTFTs with atomic layer deposited HfAlO gate dielectric., 2012,,.		0
113	Effects of fluorine plasma and ammonia annealing on pentacene thin-film transistor with HfTiO as gate dielectric. , 2013, , .		0
114	A study on the electrical characteristics of copper phthalocyanine-based OTFTs with ZrTaO as gate dielectric. , 2013, , .		0
115	Flexible solid-state fiber-shaped supercapacitors based on organic-inorganic hybrid electrodes for wearable energy storage. , 2014, , .		0
116	Thermal annealing effect on electrical characteristics of CuPc thin-film transistors on glass with ZrO <inf>2</inf> as gate dielectric. , 2015, , .		0
117	Electricalperformance of multilayer MoS <inf>2</inf> transistor with ALD HfTiO gate dielectric. , 2016, , .		O
118	A study on MnCo <inf>2</inf> 5 <inf>4</inf> @NiCo(OH) <inf>2</inf> core-shell nanocomposite for high-performance solid-state supercapacitor applications., 2017,,.		0
119	Low-voltage otft-based H2 sensor fabricated on vacuum tape. , 2017, , .		0
120	Improved Performance of Pentacene OTFT by using Hybrid Oxide of Nd and Hf as Gate Dielectric. , 2018, , .		0
121	Improved electrical properties of MoS2 transistor with Hf1-xTixO as gate dielectric., 2019,,.		0
122	Effects of Gate Electron Concentration on Organic Thin-Film Transistors with Different Pentacene Thicknesses., 2019,,.		0
123	Effects of Coulomb and Roughness Scatterings on 4H-SiC MOSFET. , 2019, , .		0
124	Improvement of Pentacene Organic Thin-Film Transistor by Using Fluorine Plasma-Treated or Ion-Implanted HfO2 as Gate Dielectric., 2019,,.		0