Jonathan Hill

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4420956/jonathan-hill-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

364 20,224 68 131 g-index

419 21,925 7.6 7
ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
364	Pyrazinacene luminescence enhancement by heat-activated surface adsorption and de-aggregation in a saponite colloidal system. <i>Applied Clay Science</i> , 2022 , 218, 106413	5.2	1
363	Oxoporphyrinogens: Novel Dyes Based on the Fusion of Calix[4]pyrrole, Quinonoids and Porphyrins. <i>NIMS Monographs</i> , 2022 , 127-147	0.3	
362	Phase Separation and pH-Dependent Behavior of Four-Arm Star-Shaped Porphyrin-PNIPAM4 Conjugates. <i>Macromolecules</i> , 2022 , 55, 2109-2122	5.5	O
361	Evaluation of the effects of natural isoquinoline alkaloids on low density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) in hepatocytes, as new potential hypocholesterolemic agents <i>Bioorganic Chemistry</i> , 2022 , 121, 105686	5.1	0
360	Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination (Adv. Mater. Interfaces 11/2022). <i>Advanced Materials Interfaces</i> , 2022 , 9, 2270062	4.6	
359	Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26528-	2 ¹⁶⁵ 34	30
358	Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. <i>Angewandte Chemie</i> , 2021 , 133, 26732	3.6	7
357	Phenyl-Modified Carbon Nitride Quantum Nanoflakes for Ultra-Highly Selective Sensing of Formic Acid: A Combined Experimental by QCM and Density Functional Theory Study. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 48595-48610	9.5	2
356	Pyrazinacenes exhibit on-surface oxidation-state-dependent conformational and self-assembly behaviours. <i>Communications Chemistry</i> , 2021 , 4,	6.3	5
355	Disposable Nitric Oxide Generator Based on a Structurally Deformed Nitrite-Type Layered Double Hydroxide. <i>Inorganic Chemistry</i> , 2021 , 60, 16008-16015	5.1	О
354	Monitoring the Release of Silver from a Supramolecular Fullerene C60-AgNO3 Nanomaterial. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 1347-1354	5.1	4
353	The Pyrazinacenes. Accounts of Chemical Research, 2021, 54, 3228-3240	24.3	4
352	Graphene-carbon 2D heterostructures with hierarchically-porous P,N-doped layered architecture for capacitive deionization. <i>Chemical Science</i> , 2021 , 12, 10334-10340	9.4	45
351	Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin. <i>Chemical Science</i> , 2021 , 12, 4925-4930	9.4	3
350	Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. <i>Materials Today Chemistry</i> , 2021 , 21, 100534	6.2	1
349	Nanoarchitecturing Carbon Nanodot Arrays on Zeolitic Imidazolate FrameworkDerived CobaltNitrogenDoped Carbon Nanoflakes toward Oxygen Reduction Electrocatalysts. <i>ACS Nano</i> , 2021 ,	16.7	8
348	Estimation of Enantiomeric Excess Based on Rapid Host G uest Exchange. <i>Chemosensors</i> , 2021 , 9, 259	4	2

(2020-2021)

347	Ultra-durable, multi-template molecularly imprinted polymers for ultrasensitive monitoring and multicomponent quantification of trace sulfa antibiotics. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 3192-	7 3•}99	2
346	The Battery of Analytical Techniques Necessary for the Effective Characterization of Solutions of Temperature-Sensitive Polymers. <i>Reviews and Advances in Chemistry</i> , 2021 , 11, 100-111	O	
345	Nanoarchitectonics of Lotus Seed Derived Nanoporous Carbon Materials for Supercapacitor Applications. <i>Materials</i> , 2020 , 13,	3.5	5
344	Rotaxanation as a sequestering template to preclude incidental metal insertion in complex oligochromophores. <i>Chemical Communications</i> , 2020 , 56, 7447-7450	5.8	1
343	Electron and energy transfer in a porphyrin-oxoporphyrinogen-fullerene triad, ZnP-OxP-C. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 14356-14363	3.6	2
342	Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15424-15446	16.4	78
341	Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes. <i>Chemical Science</i> , 2020 , 11, 2614-2620	9.4	3
340	Nanoarchitektonik als ein Ansatz zur Erzeugung bioßnlicher hierarchischer Organisate. Angewandte Chemie, 2020 , 132, 15550-15574	3.6	7
339	Large-Area Aligned Fullerene Nanocrystal Scaffolds as Culture Substrates for Enhancing Mesenchymal Stem Cell Self-Renewal and Multipotency. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6497-6506	5.6	27
338	Supramolecular ultrafast energy and electron transfer in a directly linked BODIPY-oxoporphyrinogen dyad upon fluoride ion binding. <i>Chemical Communications</i> , 2020 , 56, 3855-38	358 358	6
337	Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess. <i>Frontiers of Chemical Science and Engineering</i> , 2020 , 14, 28-40	4.5	4
336	Emission Control by Molecular Manipulation of Double-Paddled Binuclear Pt Complexes at the Air-Water Interface. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 406-414	4.5	19
335	Post-assembly dimension-dependent face-selective etching of fullerene crystals. <i>Materials Horizons</i> , 2020 , 7, 787-795	14.4	21
334	meso-Tetraphenylporphine as a prochiral solvating agent (pro-CSA): A physicochemical study. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 320-329	1.8	3
333	Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate. <i>Advanced Materials</i> , 2020 , 32, e1905942	24	48
332	Molecular Engineering of Ebubstituted Oxoporphyrinogens for Hydrogen-Bond Donor Catalysis. European Journal of Organic Chemistry, 2020 , 2020, 82-90	3.2	8
331	Porous framework materials for singlet oxygen generation. <i>Coordination Chemistry Reviews</i> , 2020 , 425, 213541	23.2	18
330	Helicity Manipulation of a Double-Paddled Binaphthyl in a Two-Dimensional Matrix Field at the Air-Water Interface. <i>ACS Nano</i> , 2020 , 14, 13294-13303	16.7	9

329	Selective Phase Transfer Reagents (OxP-crowns) for Chromogenic Detection of Nitrates Especially Ammonium Nitrate. <i>Chemistry - A European Journal</i> , 2020 , 26, 13177-13183	4.8	4
328	Enantiomeric Excess Dependent Splitting of NMR Signal through Dynamic Chiral Inversion and Coligand Exchange in a Coordination Complex. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 8164-816	56·4	2
327	High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. <i>Nanomaterials</i> , 2020 , 10,	5.4	17
326	Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. <i>ACS Nano</i> , 2019 , 13, 2410-2419	16.7	29
325	Quinone-Facilitated Coordinated Bipyrene and Polypyrene on Au(111) by Capture of Gold Adatoms. Journal of Physical Chemistry C, 2019 , 123, 16281-16287	3.8	6
324	Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12654-12660	13	54
323	Self-assembly as a key player for materials nanoarchitectonics. <i>Science and Technology of Advanced Materials</i> , 2019 , 20, 51-95	7.1	204
322	Knock-on synthesis of tritopic calix[4]pyrrole host for enhanced anion interactions. <i>Dalton Transactions</i> , 2019 , 48, 15583-15596	4.3	10
321	Structural Design for Molecular Catalysts 2019 , 11-92		
320	Supermolecular Catalysts 2019 , 93-172		
319	Supermolecular Catalysts 2019 , 93-172 Multimodal switching of a redox-active macrocycle. <i>Nature Communications</i> , 2019 , 10, 1007	17.4	13
		17.4	
319	Multimodal switching of a redox-active macrocycle. <i>Nature Communications</i> , 2019 , 10, 1007 Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven		
319	Multimodal switching of a redox-active macrocycle. <i>Nature Communications</i> , 2019 , 10, 1007 Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19570-19574 Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation	16.4	6
319 318 317	Multimodal switching of a redox-active macrocycle. <i>Nature Communications</i> , 2019 , 10, 1007 Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19570-19574 Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation and Esubstitution. <i>Journal of Porphyrins and Phthalocyanines</i> , 2019 , 23, 1184-1194 Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns	16.4	3
319 318 317 316	Multimodal switching of a redox-active macrocycle. <i>Nature Communications</i> , 2019 , 10, 1007 Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19570-19574 Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation and Bubstitution. <i>Journal of Porphyrins and Phthalocyanines</i> , 2019 , 23, 1184-1194 Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns Having Microscopic Recognition Properties. <i>ACS Nano</i> , 2019 , 13, 14005-14012 Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced	16.4 1.8 16.7	6 3 26
319 318 317 316 315	Multimodal switching of a redox-active macrocycle. <i>Nature Communications</i> , 2019 , 10, 1007 Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19570-19574 Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation and Bubstitution. <i>Journal of Porphyrins and Phthalocyanines</i> , 2019 , 23, 1184-1194 Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns Having Microscopic Recognition Properties. <i>ACS Nano</i> , 2019 , 13, 14005-14012 Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced Electrochemical Supercapacitance. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 521-528 Modulation of Mesenchymal Stem Cells Mechanosensing at Fluid Interfaces by Tailored	16.4 1.8 16.7 5.1	6 3 26 65

311	Structural Modulation of Chromic Response: Effects of Binding-Site Blocking in a Conjugated Calix[4]pyrrole Chromophore. <i>ChemistryOpen</i> , 2018 , 7, 323-335	2.3	11
310	Mesoporous fullerene C70 cubes with highly crystalline frameworks and unusually enhanced photoluminescence properties. <i>Materials Horizons</i> , 2018 , 5, 285-290	14.4	46
309	Fluoride-ion-binding promoted photoinduced charge separation in a self-assembled C alkyl cation bound bis-crown ether-oxoporphyrinogen supramolecule. <i>Chemical Communications</i> , 2018 , 54, 1351-13.	5 4·8	8
308	Electro-click construction of hybrid nanocapsule films with triggered delivery properties. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 2761-2770	3.6	4
307	NMR Spectroscopic Determination of Enantiomeric Excess Using Small Prochiral Molecules. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 5114-5120	3.4	7
306	Molecular rotors confined at an ordered 2D interface. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 307	73 . 607	8 35
305	Defect-free exfoliation of graphene at ultra-high temperature. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 538, 127-132	5.1	24
304	Mechanical Tuning of Through-Molecule Conductance in a Conjugated Calix[4]pyrrole. <i>ChemistrySelect</i> , 2018 , 3, 6473-6478	1.8	15
303	Graphene composites with dental and biomedical applicability. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 801-808	3	18
302	Improving the Colloidal Stability of Temperature-Sensitive Poly(-isopropylacrylamide) Solutions Using Low Molecular Weight Hydrophobic Additives. <i>ACS Omega</i> , 2018 , 3, 11865-11873	3.9	6
301	Hierarchical heterostructure of Ag-nanoparticle decorated fullerene nanorods (Ag-FNRs) as an effective single particle freestanding SERS substrate. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 188	7 ³ 5-188	3 7 8
300	Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2017 , 27, 576-585	3.2	21
299	Spongelike Porous Silica Nanosheets: From "Soft" Molecular Trapping to DNA Delivery. <i>ACS Applied Materials & Documents (Materials & Documents)</i> , 9, 4509-4518	9.5	21
298	Highly Networked Capsular Silica-Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 9945-9954	9.5	48
297	Substrate-Mediated C-C and C-H Coupling after Dehalogenation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3669-3675	16.4	29
296	Visual Detection of Cesium Ions in Domestic Water Supply or Seawater using a Nano-optode. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 678-683	5.1	49
295	Simple Fabrication of Titanium Dioxide/N-Doped Carbon Hybrid Material as Non-Precious Metal Electrocatalyst for the Oxygen Reduction Reaction. <i>ACS Applied Materials & Discourse (Material & Discourse)</i> , 187	′8 ²⁵ 18	789
294	Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 23658-23676	3.6	55

293	Absorption and Fluorescence Features of an Amphiphilic meso-Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 8614-8624	2.8	11
292	Selective CO Capture and High Proton Conductivity of a Functional Star-of-David Catenane Metal-Organic Framework. <i>Advanced Materials</i> , 2017 , 29, 1703301	24	34
291	Suppression of Myogenic Differentiation of Mammalian Cells Caused by Fluidity of a Liquid-Liquid Interface. <i>ACS Applied Materials & Acs Acs Acs Acs Acs Acs Acs Acs Acs Acs</i>	9.5	42
290	Morphology Adjustable Silica Nanosheets for Immobilization of Gold Nanoparticles. <i>ChemistrySelect</i> , 2017 , 2, 5793-5799	1.8	8
289	Intentional Closing/Opening of "Hole-in-Cube" Fullerene Crystals with Microscopic Recognition Properties. <i>ACS Nano</i> , 2017 , 11, 7790-7796	16.7	57
288	Porphyrinoid rotaxanes: building a mechanical picket fence. <i>Chemical Science</i> , 2017 , 8, 6679-6685	9.4	21
287	Novel solid-state luminous composites from a layered inorganicBrganic monolith containing neutral porphyrins. <i>Journal of Materials Science</i> , 2017 , 52, 12156-12169	4.3	3
286	Fabrication of Silica-Protein Hierarchical Nanoarchitecture with Gas-Phase Sensing Activity. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 5908-5917	1.3	11
285	Mechanically Induced Opening-Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. <i>ChemPhysChem</i> , 2017 , 18, 1470-1474	3.2	39
284	Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. <i>ACS Applied Materials & Design Section</i> , 9, 44458-44465	9.5	43
283	Characterization of Branched Carbon Nanostructures 2016 , 468-469		
282	Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth. <i>ACS Nano</i> , 2016 , 10, 8796-802	16.7	75
281	Fluorescent mesomorphic pyrazinacenes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 11514-11523	7.1	7
2 80	Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C/C alcohol discrimination. <i>Science and Technology of Advanced Materials</i> , 2016 , 17, 483-492	7.1	36
279	Syntheses and structural characterization of amphiphilic mononuclear complexes [FeIII(L)(X)2] (X = Br, SCN). <i>Journal of Coordination Chemistry</i> , 2016 , 69, 3182-3191	1.6	1
278	From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. <i>ACS Applied Materials & Description of Materials & Des</i>	9.5	35
277	Rekordeffizienz fl Ruthenium-freie Solarzellen durch eine Kombination aus Molecular Engineering und Cosensitivierung. <i>Angewandte Chemie</i> , 2016 , 128, 3028-3030	3.6	4
276	Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates. <i>Chemistry - A European Journal</i> , 2016 , 22, 1301-1	4 .8	20

(2016-2016)

275	Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. <i>Advanced Materials</i> , 2016 , 28, 1251-86	24	373
274	Porphyrin/Platinum(II) C^N^N Acetylide Complexes: Synthesis, Photophysical Properties, and Singlet Oxygen Generation. <i>Chemistry - A European Journal</i> , 2016 , 22, 4164-74	4.8	18
273	Hierarchically Structured Fullerene C70 Cube for Sensing Volatile Aromatic Solvent Vapors. <i>ACS Nano</i> , 2016 , 10, 6631-7	16.7	112
272	Surface Oxidized Carbon Nanotubes Uniformly Coated with Nickel Ferrite Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2016 , 26, 1301-1308	3.2	11
271	Surfactant-Triggered Nanoarchitectonics of Fullerene C Crystals at a Liquid-Liquid Interface. <i>Langmuir</i> , 2016 , 32, 12511-12519	4	43
270	Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8426-30	16.4	84
269	Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire. <i>ACS Applied Materials & Distriction</i> 8, 9059-70	9.5	39
268	Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5737-5744	13	38
267	Determination of blood potassium using a fouling-resistant PVDFHFP-based optode. <i>RSC Advances</i> , 2016 , 6, 14261-14265	3.7	13
266	Anion binding, electrochemistry and solvatochromism of Ebrominated oxoporphyrinogens. <i>Dalton Transactions</i> , 2016 , 45, 4006-16	4.3	6
265	Selective octabromination of tetraarylporphyrins based on meso-substituent identity: Structural and electrochemical studies. <i>Journal of Porphyrins and Phthalocyanines</i> , 2016 , 20, 213-222	1.8	5
264	Fabrication and characterization of branched carbon nanostructures. <i>Beilstein Journal of Nanotechnology</i> , 2016 , 7, 1260-1266	3	6
263	Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. <i>Angewandte Chemie</i> , 2016 , 128, 8566-8570	3.6	13
262	Molecular Engineering Combined with Cosensitization Leads to Record Photovoltaic Efficiency for Non-ruthenium Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2976-8	16.4	40
261	Nanostructured polymeric yolk@hell capsules: a versatile tool for hierarchical nanocatalyst design. Journal of Materials Chemistry A, 2016 , 4, 9850-9857	13	11
260	Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 12576-81	3.6	62
259	Tautomerism in Oxoporphyrinogens and Pyrazinacenes 2016 , 203-228		
258	Mesoporous graphitic carbon microtubes derived from fullerene C70 tubes as a high performance electrode material for advanced supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13899-1390)6 ¹³	64

257	Nanoporous Carbon Tubes from Fullerene Crystals as the Œlectron Carbon Source. <i>Angewandte Chemie</i> , 2015 , 127, 965-969	3.6	14
256	Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. <i>Nano Letters</i> , 2015 , 15, 4793-8	11.5	49
255	Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth. <i>ACS Applied Materials & Acs applied Materials amp; Interfaces</i> , 2015 , 7, 15667-73	9.5	90
254	Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 6189-94	9.5	36
253	Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals. <i>Nanotechnology</i> , 2015 , 26, 204002	3.4	30
252	Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations. <i>Ceramics International</i> , 2015 , 41, 9426-9432	5.1	14
251	Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. <i>Nano Today</i> , 2015 , 10, 138-167	17.9	238
250	Totally Phospholipidic Mesoporous Particles. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 7255-7263	3.8	7
249	Functional Nanomaterials Prepared by Nanoarchitectonics-Based Supramolecular Assembly. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2015 , 45-61	0.3	
248	In situ 2D-extraction of DNA wheels by 3D through-solution transport. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 32122-5	3.6	19
247	Nanoporous carbon tubes from fullerene crystals as the Electron carbon source. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 951-5	16.4	96
246	Breaking aggregation in a tetrathiafulvalene-fused zinc porphyrin by metal-ligand coordination to form a donor-acceptor hybrid for ultrafast charge separation and charge stabilization. <i>Dalton Transactions</i> , 2015 , 44, 359-67	4.3	16
245	Supramolecular Nanotechnology: Soft Assembly of Hard Nanomaterials 2015 , 95-108		
244	Hollow Capsules Fabricated by Template Polymerization of N-Vinylcaprolactam. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 2389-93	1.3	5
243	Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8988-91	16.4	86
242	Mechanochemical Tuning of the Binaphthyl Conformation at the AirWater Interface. <i>Angewandte Chemie</i> , 2015 , 127, 9116-9119	3.6	19
241	Manipulation of shell morphology of silicate spheres from structural evolution in a purely inorganic system. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1379-86	4.5	12
240	Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Large-Scale Tissue Engineering. <i>Advanced Materials</i> , 2015 , 27, 4020-6	24	101

239	Nanoarchitectonics: a new materials horizon for nanotechnology. <i>Materials Horizons</i> , 2015 , 2, 406-413	14.4	210
238	Chiral sensing by nonchiral tetrapyrroles. <i>Accounts of Chemical Research</i> , 2015 , 48, 521-9	24.3	76
237	Thin Film Nanoarchitectonics. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 466-479	3.2	44
236	Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6614-6619	13	63
235	Composite Nanoarchitectonics for Ternary Systems of Reduced Graphene Oxide/Carbon Nanotubes/Nickel Oxide with Enhanced Electrochemical Capacitor Performance. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 267-274	3.2	63
234	Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions. <i>Chemistry of Materials</i> , 2014 , 26, 519-532	9.6	77
233	Ubiquinone-rhodol (UQ-Rh) for fluorescence imaging of NAD(P)H through intracellular activation. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3993-5	16.4	53
232	Conformational interchange of a carbohydrate by mechanical compression at the air-water interface. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10286-94	3.6	12
231	Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide. <i>ACS Applied Materials & District Research</i> , 18352-9	9.5	49
230	Bioinspired nanoarchitectonics as emerging drug delivery systems. <i>New Journal of Chemistry</i> , 2014 , 38, 5149-5163	3.6	118
229	New synthesis of unsymmetrically-substituted 2,5-diarylpyrroles from homopropargyl sulfonamides. <i>RSC Advances</i> , 2014 , 4, 4897	3.7	18
228	Reaction mediated artificial cell termination: control of vesicle viability using Rh(I)-catalyzed hydrogenation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16454-7	3.6	
227	Media-dependent morphology of supramolecular aggregates of Eyclodextrin-grafted chitosan and insulin through multivalent interactions. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 1802-1812	7.3	17
226	Intracellular imaging of cesium distribution in Arabidopsis using Cesium Green. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 8208-11	9.5	30
225	Chiral guest binding as a probe of macrocycle dynamics and tautomerism in a conjugated tetrapyrrole. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2112-8	16.4	36
224	Research Update: Mesoporous sensor nanoarchitectonics. APL Materials, 2014, 2, 030701	5.7	57
223	Acid/base switching of the tautomerism and conformation of a dioxoporphyrin for integrated binary subtraction. <i>Chemistry - A European Journal</i> , 2014 , 20, 12910-6	4.8	14
222	Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 9713-46	3.6	265

221	Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. <i>Nano Today</i> , 2014 , 9, 378-394	17.9	210
220	Aligned 1-D nanorods of a Egelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8548-51	16.4	77
219	Layer-by-layer growth of precisely controlled hetero-molecular multi-layers and superlattice structures. <i>Thin Solid Films</i> , 2014 , 554, 74-77	2.2	4
218	Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms. <i>ACS Nano</i> , 2014 , 8, 5240-8	16.7	33
217	Self-assembly: from amphiphiles to chromophores and beyond. <i>Molecules</i> , 2014 , 19, 8589-609	4.8	54
216	Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. <i>Chemistry Letters</i> , 2014 , 43, 36-68	1.7	761
215	Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 513	0-73	8
214	Ubiquinone-Rhodol (UQ-Rh) for Fluorescence Imaging of NAD(P)H through Intracellular Activation. <i>Angewandte Chemie</i> , 2014 , 126, 4074-4076	3.6	5
213	Unexpected but convenient synthesis of soluble meso-tetrakis(3,4-benzoquinone)-substituted porphyrins. <i>Journal of Porphyrins and Phthalocyanines</i> , 2014 , 18, 173-181	1.8	5
212	Nanoarchitectonics of molecular aggregates: science and technology. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 390-401	1.3	35
211	Arylpyrrole oligomers as tunable anion receptors. Organic and Biomolecular Chemistry, 2014, 12, 5492-9	3.9	13
210	Low-temperature remediation of NO catalyzed by interleaved CuO nanoplates. <i>Advanced Materials</i> , 2014 , 26, 4481-5	24	66
209	Multicolour fluorescent memory based on the interaction of hydroxy terphenyls with fluoride anions. <i>Chemistry - A European Journal</i> , 2014 , 20, 16293-300	4.8	5
208	Dynamic Processes in Prochiral Solvating Agents (pro-CSAs) Studied by NMR Spectroscopy. <i>Symmetry</i> , 2014 , 6, 345-367	2.7	10
207	Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. <i>Thin Solid Films</i> , 2014 , 554, 32-40	2.2	12
206	Fabrication of a nano-structured Pt-loaded cerium oxide nanowire and its anode performance in the methanol electro-oxidation reaction. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6262	13	27
205	Nanoporous carbon sensor with cage-in-fiber structure: highly selective aniline adsorbent toward cancer risk management. <i>ACS Applied Materials & management. ACS Applied Materials & management. Materials & mate</i>	9.5	57
204	Shell-adjustable hollow Boftßilica spheres as a support for gold nanoparticles. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3600	13	55

203	Electrochemical synthesis of transparent, amorphous, CErich, photoactive, and low-doped film with an interconnected structure. <i>Small</i> , 2013 , 9, 2064-8	11	19
202	Controlling porphyrin nanoarchitectures at solid interfaces. <i>Langmuir</i> , 2013 , 29, 7291-9	4	14
201	Dynamic breathing of CO2 by hydrotalcite. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18040-3	3 16.4	57
200	Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on" cyanide probes. <i>Chemical Communications</i> , 2013 , 49, 10136-8	5.8	142
199	NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. <i>Nature Communications</i> , 2013 , 4, 2188	17.4	88
198	25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. <i>Advanced Materials</i> , 2013 , 25, 6477-512	24	345
197	Multinuclear solid-state NMR spectroscopy of a paramagnetic layered double hydroxide. <i>RSC Advances</i> , 2013 , 3, 19857	3.7	13
196	Alcohol-induced decomposition of Olmstead's crystalline Ag(I) B ullerene heteronanostructure yields B ucky cubes[] <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1174-1181	7.1	59
195	Light-harvesting nanorods based on pheophorbide-appending cellulose. <i>Biomacromolecules</i> , 2013 , 14, 3223-30	6.9	12
194	Ligand displacement for fixing manganese: relevance to cellular metal ion transport and synthesis of polymeric coordination complexes. <i>Dalton Transactions</i> , 2013 , 42, 2779-85	4.3	4
193	Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. Journal of the American Chemical Society, 2013 , 135, 586-9	16.4	125
192	Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at a liquid-liquid interface. <i>Langmuir</i> , 2013 , 29, 7195-202	4	62
191	ECyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host-guest interactions with mechanical stimuli. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2155-2161	7.3	110
190	Enzyme nanoarchitectonics: organization and device application. <i>Chemical Society Reviews</i> , 2013 , 42, 6322-45	58.5	330
189	Fullerene nanoarchitectonics: from zero to higher dimensions. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 166	52 _{‡.} 7 ₅ 9	182
188	Langmuir nanoarchitectonics: one-touch fabrication of regularly sized nanodisks at the air-water interface. <i>Langmuir</i> , 2013 , 29, 7239-48	4	48
0			
187	Hydrogen-bond-driven 'homogeneous intercalation' for rapid, reversible, and ultra-precise actuation of layered clay nanosheets. <i>Chemical Communications</i> , 2013 , 49, 3631-3	5.8	19

185	Alkyl imidazolium ionic-liquid-mediated formation of gold particle superstructures. <i>Langmuir</i> , 2013 , 29, 7186-94	4	20
184	Naked-eye discrimination of methanol from ethanol using composite film of oxoporphyrinogen and layered double hydroxide. <i>ACS Applied Materials & mp; Interfaces</i> , 2013 , 5, 5927-30	9.5	44
183	Colorimetric visualization of acid-base equilibria in non-polar solvent. <i>Chemical Communications</i> , 2013 , 49, 6870-2	5.8	24
182	Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10580-611	3.6	268
181	Bioactive flake-shell capsules: soft silica nanoparticles for efficient enzyme immobilization. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3248-3256	7.3	36
180	Nanophotonics and supramolecular chemistry. <i>Nanophotonics</i> , 2013 , 2, 265-277	6.3	2
179	Micrometer-level naked-eye detection of caesium particulates in the solid state. <i>Science and Technology of Advanced Materials</i> , 2013 , 14, 015002	7.1	31
178	Self-assembled fullerene nanostructures. <i>Journal of Oleo Science</i> , 2013 , 62, 541-53	1.6	17
177	Mechanical control of nanomaterials and nanosystems. <i>Advanced Materials</i> , 2012 , 24, 158-76	24	353
176	Nanosystem Control: Mechanical Control of Nanomaterials and Nanosystems (Adv. Mater. 2/2012). <i>Advanced Materials</i> , 2012 , 24, 157-157	24	
175	Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 2012, 85, 1-32	5.1	602
174	One-touch Nanofabrication of Regular-sized Disks through Interfacial Dewetting and Weak Molecular Interaction. <i>Chemistry Letters</i> , 2012 , 41, 170-172	1.7	12
173	Electrochemical Coupling Layer-by-layer (ECC-LbL) Assembly in Patterning Mode. <i>Chemistry Letters</i> , 2012 , 41, 383-385	1.7	23
172	Bioinspired Materials Chemistry I: OrganicIhorganic Nanocomposites 2012 , 121-138		1
171	Materials nanoarchitectonics for environmental remediation and sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2369-2377		147
170	Novel Multilayer Thin Films: Hierarchic Layer-by-Layer (Hi-LbL) Assemblies 2012 , 69-81		2
169	Nonionic reverse micelle formulation and their microstructure transformations in an aromatic solvent ethylbenzene. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 414, 140-	1 5 0	18
168	Self-assembly of a mononuclear [Fe(III)(L)(EtOH)2] complex bearing an n-dodecyl chain on solid highly oriented pyrolytic graphite surfaces. <i>Chemistry - A European Journal</i> , 2012 , 18, 16419-25	4.8	6

(2012-2012)

167	Silica-based gene reverse transfection: an upright nanosheet network for promoted DNA delivery to cells. <i>Chemical Communications</i> , 2012 , 48, 8496-8	5.8	32
166	Antioxidant-substituted tetrapyrazinoporphyrazine as a fluorescent sensor for basic anions. <i>Chemical Communications</i> , 2012 , 48, 3951-3	5.8	21
165	Colorimetric detection of trace water in tetrahydrofuran using N,N'-substituted oxoporphyrinogens. <i>Chemical Communications</i> , 2012 , 48, 3933-5	5.8	40
164	Evolution of molecular machines: from solution to soft matter interface. Soft Matter, 2012, 8, 15-20	3.6	51
163	A Mechanically Controlled Indicator Displacement Assay. <i>Angewandte Chemie</i> , 2012 , 124, 9781-9784	3.6	14
162	A mechanically controlled indicator displacement assay. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9643-6	16.4	66
161	Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. <i>Science and Technology of Advanced Materials</i> , 2012 , 13, 053001	7.1	59
160	Life from Interface. Cellular Origin and Life in Extreme Habitats, 2012, 237-252		
159	Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-⊞ <i>International Journal of Nanomedicine</i> , 2012 , 7, 3625-35	7:3	19
158	Gold Nanoparticles Aggregation: Drastic Effect of Cooperative Functionalities in a Single Molecular Conjugate. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2683-2690	3.8	114
157	81 Structures and Properties of Non-Planar Tetrapyrroles. <i>Handbook of Porphyrin Science</i> , 2012 , 123-16	570.3	3
156	Selective, sensitive and reversible "turn-on" fluorescent cyanide probes based on 2,2'-dipyridylaminoanthracene-Cu2+ ensembles. <i>Chemical Communications</i> , 2012 , 48, 11513-5	5.8	165
155	Materials self-assembly and fabrication in confined spaces. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10,	389	67
154	Flake-shell capsules: adjustable inorganic structures. <i>Small</i> , 2012 , 8, 2345-9	11	51
153	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. <i>NPG Asia Materials</i> , 2012 , 4, e17-e17	10.3	305
152	Inorganic Nanoarchitectonics for Biological Applications. <i>Chemistry of Materials</i> , 2012 , 24, 728-737	9.6	195
151	Molecular recognition: from solution science to nano/materials technology. <i>Chemical Society Reviews</i> , 2012 , 41, 5800-35	58.5	321
150	Soft Capsules, Hard Capsules, and Hybrid Capsules. <i>Soft Materials</i> , 2012 , 10, 387-412	1.7	22

149	Ag Nanoparticle-Poly(acrylic acid) Composite Film with Dynamic Plasmonic Properties. <i>Australian Journal of Chemistry</i> , 2012 , 65, 1223	1.2	5
148	Supramolecular approaches for drug development. Current Medicinal Chemistry, 2012 , 19, 2388-98	4.3	23
147	Structural characterizations of diglycerol monomyristate reverse micelles in aromatic solvent ethylbenzene. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 3716-24	1.3	1
146	Mixing antisolvents induced modulation in the morphology of crystalline C60. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6380-4	1.3	7
145	Nanostructured manganese oxide particles from coordination complex decomposition and their catalytic properties for ethanol oxidation. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 8087-9	93 ^{1.3}	2
144	Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 7885-95	1.3	1
143	Novel Concepts for Organic Syntheses Based on Interfaces and Molecular Machines. <i>Current Organic Synthesis</i> , 2012 , 9, 428-438	1.9	4
142	A Chemists Method for Making Pure Clean Graphene. Carbon Nanostructures, 2012, 129-136	0.6	
141	Enhanced photocurrents via redox modulation by fluoride binding to oxoporphyrinogen in a zinc porphyrin-oxoporphyrinogen surface modified TiO2 supramolecular solar cell. <i>Chemical Communications</i> , 2011 , 47, 6003-5	5.8	35
140	Operation of micro and molecular machines: a new concept with its origins in interface science. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4802-11	3.6	44
139	Self-assembled pyrazinacene nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4868-76	3.6	20
138	Selective and sensitive "turn-on" fluorescent Zn2+ sensors based on di- and tripyrrins with readily modulated emission wavelengths. <i>Chemical Communications</i> , 2011 , 47, 5431-3	5.8	159
137	Reversible photoredox switching of porphyrin-bridged bis-2,6-di-tert-butylphenols. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16119-26	16.4	30
136	Electrochemical-coupling layer-by-layer (ECC-LbL) assembly. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7348-51	16.4	131
135	OrganicIhorganic Supramolecular Materials 2011 , 43-55		
134	Control of nano/molecular systems by application of macroscopic mechanical stimuli. <i>Chemical Science</i> , 2011 , 2, 195-203	9.4	56
133	Layer-by-layer assembly for drug delivery and related applications. <i>Expert Opinion on Drug Delivery</i> , 2011 , 8, 633-44	8	100
132	Molecular alignment and energy-level diagram at heteromolecular interface of quaterrylene and terrylene-3,4,11,12-tetracarboximide. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 4888-92	1.3	1

131	Carbon nanocage: super-adsorber of intercalators for DNA protection. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3084-90	1.3	10
130	Crystallographic phase induced electro-optic properties of nanorod blend nematic liquid crystal. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 7729-34	1.3	5
129	Base-selective adsorption of nucleosides to pore-engineered nanocarbon, carbon nanocage. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3959-64	1.3	10
128	Hierarchic Template Approach for Synthesis of Silica Nanocapsules with Tuned Shell Thickness. <i>Chemistry Letters</i> , 2011 , 40, 840-842	1.7	5
127	Manipulation of thin film assemblies: Recent progress and novel concepts. <i>Current Opinion in Colloid and Interface Science</i> , 2011 , 16, 459-469	7.6	18
126	Layer-by-layer self-assembled shells for drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2011 , 63, 762-7	1 18.5	376
125	Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface. <i>Nanoscale Research Letters</i> , 2011 , 6, 304	5	24
124	Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. <i>Small</i> , 2011 , 7, 1288-308	11	150
123	Self-Assembled Nanoarchitectures: Thin-Film-Based Nanoarchitectures for Soft Matter: Controlled Assemblies into Two-Dimensional Worlds (Small 10/2011). <i>Small</i> , 2011 , 7, 1287-1287	11	1
122	Monolayers at air-water interfaces: from origins-of-life to nanotechnology. <i>Chemical Record</i> , 2011 , 11, 199-211	6.6	37
121	A Polymer-Electrolyte-Based Atomic Switch. Advanced Functional Materials, 2011, 21, 93-99	15.6	117
120	Chirality sensing by nonchiral porphines. <i>Chemistry - A European Journal</i> , 2011 , 17, 3558-61	4.8	27
119	Structure and rheology of reverse micelles in dipentaerythrityl tri-(12-hydroxystearate)/oil systems. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4911-8	3.6	12
118	Polyethylenes bearing a terminal porphyrin group. Chemical Communications, 2011, 47, 7057-9	5.8	24
117	Large scale assembly of ordered donor-acceptor heterojunction molecular wires using the Langmuir-Blodgett technique. <i>Chemical Communications</i> , 2011 , 47, 6825-7	5.8	21
116	Anchoring of self-assembled monolayers of unsymmetrically-substituted chromophores with an oxoporphyrinogen surface clamp. <i>Chemical Communications</i> , 2011 , 47, 8533-5	5.8	10
115	Large-scale synthesis of WOxEDA nanobelts and their application as photoswitches. <i>CrystEngComm</i> , 2011 , 13, 2237	3.3	22
114	Real time self-assembly and reassembly of molecular nanowires of trigeminal amphiphile porphyrins. <i>Chemical Communications</i> , 2011 , 47, 2285-7	5.8	36

113	Tautomers of extended reduced pyrazinacenes: a density-functional-theory based study. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2145-50	3.6	8
112	Langmuir monolayers of a cholesterol-armed cyclen complex that can control enantioselectivity of amino acid recognition by surface pressure. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4895-900	3.6	59
111	Putting the 'N' in ACENE: pyrazinacenes and their structural relatives. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 5005-17	3.9	104
110	Dynamic supramolecular systems at interfaces. Supramolecular Chemistry, 2011 , 23, 183-194	1.8	10
109	Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1-13	1.3	272
108	Supramolecular Approaches to Nanotechnology: Switching Properties and Dynamic Functions. <i>Current Organic Chemistry</i> , 2011 , 15, 3719-3733	1.7	7
107	Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices. <i>Advances in Polymer Science</i> , 2010 , 51-87	1.3	82
106	Intelligent chiral sensing based on supramolecular and interfacial concepts. <i>Sensors</i> , 2010 , 10, 6796-820	3.8	52
105	Recent developments in supramolecular approach for nanocomposites. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 21-33	1.3	39
104	High purity graphenes prepared by a chemical intercalation method. <i>Nanoscale</i> , 2010 , 2, 2139-43	7.7	56
103	Ultranarrow PbS Nanorod-Nematic Liquid Crystal Blend for Enhanced Electro-optic Properties. <i>ACS Applied Materials & District Applied & Distric</i>	9.5	32
102	Designing Lower Critical Solution Temperature Behavior into a Discotic Small Molecule. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1336-1340	6.4	19
101	Tautomerism in Reduced Pyrazinacenes. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 517-25	6.4	15
100	Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12868-70	16.4	105
99	The Simplest Layer-by-Layer Assembly Structure: Best Paired Polymer Electrolytes with One Charge per Main Chain Carbon Atom for Multilayered Thin Films. <i>Macromolecules</i> , 2010 , 43, 3947-3955	5.5	40
98	Open-mouthed metallic microcapsules: exploring performance improvements at agglomeration-free interiors. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14415-7	16.4	86
97	Effect of anion binding on charge stabilization in a bis-fullerene-oxoporphyrinogen conjugate. <i>Chemical Communications</i> , 2010 , 46, 7933-5	5.8	13
96	By what means should nanoscaled materials be constructed: molecule, medium, or human?. <i>Nanoscale</i> , 2010 , 2, 198-214	7.7	43

(2009-2010)

95	Probing the micro-phase separation of thermo-responsive amphiphilic polymer in water/ethanol solution. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 8408-16	1.3	10
94	Two-dimensional nanoarchitectonics based on self-assembly. <i>Advances in Colloid and Interface Science</i> , 2010 , 154, 20-9	14.3	141
93	Supramolecular Materials from Inorganic Building Blocks. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2010 , 20, 1-9	3.2	18
92	Layer-by-Layer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing. <i>Angewandte Chemie</i> , 2010 , 122, 9931-9933	3.6	63
91	Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9737-9	16.4	276
90	Stable pseudotetrahedral supermolecules based on an oxoporphyrinogen. <i>Tetrahedron Letters</i> , 2010 , 51, 2935-2938	2	5
89	Macroporous poly(aromatic amine): Synthesis and film fabrication. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 354, 156-161	5.1	10
88	Form factor of anN-layered helical tape and its application to nanotube formation of hexa-peri-hexabenzocoronene-based molecules. <i>Journal of Applied Crystallography</i> , 2010 , 43, 850-857	3.8	11
87	New aspects of porphyrins and related compounds: self-assembled structures in two-dimensional molecular arrays. <i>Journal of Porphyrins and Phthalocyanines</i> , 2009 , 13, 22-34	1.8	11
86	Structures and properties of hemiquinone-substituted oxoporphyrinogens. <i>Journal of Porphyrins and Phthalocyanines</i> , 2009 , 13, 60-69	1.8	6
85	RECENT DEVELOPMENTS ON PORPHYRIN ASSEMBLIES 2009 , 183-213		
84	Hierarchic Nanostructure for Auto-Modulation of Material Release: Mesoporous Nanocompartment Films. <i>Advanced Functional Materials</i> , 2009 , 19, 1792-1799	15.6	79
83	Soft Langmuir B lodgett Technique for Hard Nanomaterials. <i>Advanced Materials</i> , 2009 , 21, 2959-2981	24	190
82	Nanorod-Driven Orientational Control of Liquid Crystal for Polarization-Tailored Electro-Optic Devices. <i>Advanced Materials</i> , 2009 , 21, 989-993	24	51
81	Toward volatile and nonvolatile molecular memories: fluorescence switching based on fluoride-triggered interconversion of simple porphyrin derivatives. <i>Chemistry - A European Journal</i> , 2009 , 15, 2486-90	4.8	26
80	Studies on Langmuir monolayers of polyprenyl phosphates towards a possible scenario for origin of life. <i>Colloids and Surfaces B: Biointerfaces</i> , 2009 , 74, 426-35	6	10
79	Variable temperature characterization of N,N?-Bis(n-pentyl)terrylene-3,4:11,12-tetracarboxylic diimide thin film transistor. <i>Organic Electronics</i> , 2009 , 10, 1187-1190	3.5	5
78	Hydrogen-bond-assisted "gold cold fusion" for fabrication of 2D web structures. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 1055-8	4.5	12

77	Solvent engineering for shape-shifter pure fullerene (C60). <i>Journal of the American Chemical Society</i> , 2009 , 131, 6372-3	16.4	173
76	Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. Journal of the American Chemical Society, 2009 , 131, 4220-1	16.4	131
75	Supramolecular approaches to biological therapy. Expert Opinion on Biological Therapy, 2009, 9, 307-20	5.4	28
74	Diverse self-assembly in soluble oligoazaacenes: a microscopy study. <i>Langmuir</i> , 2009 , 25, 8408-13	4	26
73	Two-dimensional molecular array of porphyrin derivatives with bright and dark spots as a model of two-digit molecular-dot memory. <i>Synthetic Metals</i> , 2009 , 159, 765-768	3.6	11
72	Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. <i>Soft Matter</i> , 2009 , 5, 3562	3.6	75
71	Self-assembly of optical molecules with supramolecular concepts. <i>International Journal of Molecular Sciences</i> , 2009 , 10, 1950-66	6.3	11
70	Supramolecular Structures and Functions with Inorganic Building Blocks 2009 , 1-33		
69	Anion-complexation-induced stabilization of charge separation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16138-46	16.4	85
68	Pyrazinacenes: aza analogues of acenes. <i>Journal of Organic Chemistry</i> , 2009 , 74, 8914-23	4.2	55
67	Evidence for a ball-shaped cyclen cyclophane: an experimental and first principles study. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 6038-41	3.6	11
66	Block-copolymer-nanowires with nanosized domain segregation and high charge mobilities as stacked p/n heterojunction arrays for repeatable photocurrent switching. <i>Journal of the American Chemical Society</i> , 2009 , 131, 18030-1	16.4	90
65	Nuclear magnetic resonance signaling of molecular chiral information using an achiral reagent. Journal of the American Chemical Society, 2009 , 131, 9494-5	16.4	62
64	Development of polymer electrolytes based resistive switch 2009,		2
63	Langmuir films of unusual components. Journal of Nanoscience and Nanotechnology, 2009, 9, 3-18	1.3	38
62	Challenges and breakthroughs in recent research on self-assembly. <i>Science and Technology of Advanced Materials</i> , 2008 , 9, 014109	7.1	645
61	Nanostructured microspheres of MnO2 formed by room temperature solution processing. <i>Chemical Communications</i> , 2008 , 383-5	5.8	28
60	Stimuli-free auto-modulated material release from mesoporous nanocompartment films. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2376-7	16.4	135

59	Twisted, Two-Faced Porphyrins as Hosts for Bispyridyl Fullerenes: Construction and Photophysical Properties. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10559-10572	3.8	30
58	Decomposition of dinuclear manganese complexes for the preparation of nanostructured oxide materials. <i>Inorganic Chemistry</i> , 2008 , 47, 8306-14	5.1	19
57	RECENT DEVELOPMENTS ON PORPHYRIN ASSEMBLIES. Cosmos, 2008, 04, 141-171		
56	Growth and electrical properties of N,N?-bis(n-pentyl)terrylene- 3,4:11,12-tetracarboximide thin films. <i>Applied Physics Letters</i> , 2008 , 92, 163301	3.4	15
55	Chiral recognition at the airWater interface. <i>Current Opinion in Colloid and Interface Science</i> , 2008 , 13, 23-30	7.6	72
54	Fine-tuning supramolecular assemblies of fullerenes bearing long alkyl chains. <i>Thin Solid Films</i> , 2008 , 516, 2401-2406	2.2	16
53	Supramolecular chemistry in two dimensions: self-assembly and dynamic function. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1249-1257	1.6	22
52	Biomaterials and biofunctionality in layered macromolecular assemblies. <i>Macromolecular Bioscience</i> , 2008 , 8, 981-90	5.5	104
51	A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7254-7	16.4	128
50	Multi-Dimensional Control of Surfactant-Guided Assemblies of Quantum Gold Particles. <i>Advanced Materials</i> , 2008 , 20, 4027-4032	24	49
49	Supramolecular Chemistry as a Versatile Tool for Advanced Sciences in Nanospace. <i>Advanced Science Letters</i> , 2008 , 1, 28-58	0.1	10
48	Self-assembly of FeIII complexes via hydrogen bonded water molecules into supramolecular coordination networks. <i>New Journal of Chemistry</i> , 2007 , 31, 1882	3.6	12
47	Structural study of the thermally induced and photoinduced phase transitions of the 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) radical. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 6449-55	2.8	14
46	One-pot separation of tea components through selective adsorption on pore-engineered nanocarbon, carbon nanocage. <i>Journal of the American Chemical Society</i> , 2007 , 129, 11022-3	16.4	130
45	Supramolecular triad and pentad composed of zinc-porphyrin(s), oxoporphyrinogen, and fullerene(s): design and electron-transfer studies. <i>Chemistry - A European Journal</i> , 2007 , 13, 4628-35	4.8	36
44	Tautomerism in novel oxocorrologens. <i>Chemistry - A European Journal</i> , 2007 , 13, 9824-33	4.8	16
43	Real-time STM observation of molecular dynamics on a metal surface. Surface Science, 2007, 601, 3984-	3 9.8 7	30
42	Self-assembled microstructures of functional molecules. <i>Current Opinion in Colloid and Interface Science</i> , 2007 , 12, 106-120	7.6	76

41	Coordination chemistry and supramolecular chemistry in mesoporous nanospace. <i>Coordination Chemistry Reviews</i> , 2007 , 251, 2562-2591	23.2	167
40	Highly effective electrochemical anion sensing based on oxoporphyrinogen. <i>Electrochemistry Communications</i> , 2007 , 9, 2751-2754	5.1	26
39	Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 2319-40	3.6	1040
38	Pyren-1-ylmethyl N-substituted oxoporphyrinogens. <i>Journal of Porphyrins and Phthalocyanines</i> , 2007 , 11, 390-396	1.8	9
37	Porphyrin colorimetric indicators in molecular and nano-architectures. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 2969-93	1.3	29
36	Developments in Molecular Recognition and Sensing at Interfaces. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 864-883	6.3	34
35	Self-Assembly Structures of a Phenol-Substituted Porphyrin in the Solid State: Hydrogen Bonding, Kagom[Lattice, and Defect Tolerance. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16174-16180	3.8	41
34	A Novel Bis(zincporphyrin) Dxoporphyrinogen Donor Acceptor Triad: Synthesis, Electrochemical, Computational and Photochemical Studies. <i>European Journal of Organic Chemistry</i> , 2006 , 2006, 595-603	3.2	22
33	Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14478-9	16.4	159
32	A paradigm shift in the field of molecular recognition at the air-water interface: from static to dynamic. <i>Soft Matter</i> , 2006 , 2, 465-477	3.6	71
31	Regulating the stability of 2D crystal structures using an oxidation state-dependent molecular conformation. <i>Chemical Communications</i> , 2006 , 2320-2	5.8	42
30	How molecules accommodate a 2D crystal lattice mismatch: an unusual 'mixed' conformation of tetraphenylporphyrin. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 5034-7	3.6	48
29	Chromogenic indicator for anion reporting based on an N-substituted oxoporphyrinogen. <i>Inorganic Chemistry</i> , 2006 , 45, 8288-96	5.1	65
28	Room temperature liquid fullerenes: an uncommon morphology of C60 derivatives. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10384-5	16.4	123
27	Effect of guest capture modes on molecular recognition by a dynamic cavity array at the air-water interface: soft vs. tight and fast vs. slow. <i>Soft Matter</i> , 2005 , 1, 132-137	3.6	29
26	Tunable pK of amino acid residues at the air-water interface gives an L-zyme (langmuir enzyme). Journal of the American Chemical Society, 2005 , 127, 12074-80	16.4	64
25	Structures, Spectral and Electrochemical Properties of N-(Naphth-2-ylmethyl)-Appended Porphyrinogens. <i>European Journal of Organic Chemistry</i> , 2005 , 2005, 2893-2902	3.2	32
24	Supramolecular coordination assemblies of dinuclear Fe(III) complexes. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4187-92	16.4	47

(1992-2005)

23	Thermolysis of a hybrid organic-inorganic supramolecular coordination assembly: templating the formation of nanostructured fibrous materials and carbon-based microcapsules. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7048-53	16.4	42
22	Cover Picture: Supramolecular Coordination Assemblies of Dinuclear FeIII Complexes (Angew. Chem. Int. Ed. 27/2005). <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4103-4103	16.4	
21	Supramolecular Coordination Assemblies of Dinuclear FeIII Complexes. <i>Angewandte Chemie</i> , 2005 , 117, 4259-4264	3.6	8
20	Thermolysis of a Hybrid Organic I horganic Supramolecular Coordination Assembly: Templating the Formation of Nanostructured Fibrous Materials and Carbon-Based Microcapsules. <i>Angewandte Chemie</i> , 2005 , 117, 7210-7215	3.6	5
19	Titelbild: Supramolecular Coordination Assemblies of Dinuclear FeIII Complexes (Angew. Chem. 27/2005). <i>Angewandte Chemie</i> , 2005 , 117, 4173-4173	3.6	
18	Highly nonplanar, electron deficient, N-substituted tetra-oxocyclohexadienylidene porphyrinogens: structural, computational, and electrochemical investigations. <i>Journal of Organic Chemistry</i> , 2004 , 69, 5861-9	4.2	56
17	Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. <i>Science</i> , 2004 , 304, 1481-3	33.3	923
16	Cation-pi binding of an alkali metal ion by pendant alpha, alpha-dimethylbenzyl groups within a dinuclear iron(III) structural unit. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11142-3	16.4	31
15	1,4-Bis-(4-toluenesulphonyl)-1,4,7,10-tetraazacyclododecane from the direct tosylation of 1,4,7,10-tetraazacyclododecane. <i>Tetrahedron Letters</i> , 2002 , 43, 7301-7302	2	2
14	Site-specific labeling of proteins with cyclen-bound transition metal ions. <i>Inorganica Chimica Acta</i> , 2002 , 331, 123-130	2.7	11
13	Strategies for producing cluster-based magnetic arrays. <i>Polyhedron</i> , 2001 , 20, 1687-1697	2.7	38
12	Hydrogen-bonded chain structure of a six-coordinate 5,10,15,20-tetraphenylporphinatomanganese(III) complex. <i>Inorganica Chimica Acta</i> , 2001 , 315, 107-111	2.7	3
11	Facile aerial oxidation of a porphyrin. Part 18. N-alkylation of the oxidised product derived from Meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin. <i>Journal of Heterocyclic Chemistry</i> , 1995 , 32, 97-	169	28
10	Alkylation of 5,10,15-tris(3,5-di-Ebutyl-4-hydroxyphenyl)-20-(4-pyridyl)porphyrin <i>Tetrahedron</i> , 1994 , 50, 13477-13484	2.4	20
9	Facile aerial oxidation of porphyrins. Part 16. Phenolic porphyrins without tert-butyl substituents. Journal of the Chemical Society Perkin Transactions II, 1994 , 521		13
8	Aerial oxidation kinetics of a phenolic porphyrin in acid solution. <i>Journal of Heterocyclic Chemistry</i> , 1993 , 30, 1629-1633	1.9	10
7	Evidence for solid state electronic conductivity in mixtures of a porphyrin and its two-electron oxidation product. <i>Advanced Materials for Optics and Electronics</i> , 1993 , 2, 143-147		6
6	Formation of hydroxyl radicals during the facile aerial oxidation of a phenolic porphyrin. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 773		13

5	Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination. <i>Advanced Materials Interfaces</i> ,2102241	4.6	3
4	High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from Artocarpus heterophyllus Seed. <i>ACS Applied Energy Materials</i> ,	6.1	3
3	Molecular rotor based on an oxidized resorcinarene. Organic Chemistry Frontiers,	5.2	1
2	Macaroni Fullerene Crystals-Derived Mesoporous Carbon Tubes as the High Rate Performance Supercapacitor Electrode Material. <i>Bulletin of the Chemical Society of Japan</i> ,	5.1	14
1	Supramolecular Chemistry at the Mesoscale11-36		1