Jonathan Hill

List of Publications by Citations

Source: https://exaly.com/author-pdf/4420956/jonathan-hill-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

364 papers

20,224 citations

68 h-index

131 g-index

419 ext. papers

21,925 ext. citations

7.6 avg, IF

L-index

#	Paper	IF	Citations
364	Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 2319-40	3.6	1040
363	Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. <i>Science</i> , 2004 , 304, 1481-3	33.3	923
362	Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. <i>Chemistry Letters</i> , 2014 , 43, 36-68	1.7	761
361	Challenges and breakthroughs in recent research on self-assembly. <i>Science and Technology of Advanced Materials</i> , 2008 , 9, 014109	7.1	645
360	Nanoarchitectonics for Mesoporous Materials. <i>Bulletin of the Chemical Society of Japan</i> , 2012 , 85, 1-32	5.1	602
359	Layer-by-layer self-assembled shells for drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2011 , 63, 762-7	l 18.5	376
358	Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. <i>Advanced Materials</i> , 2016 , 28, 1251-86	24	373
357	Mechanical control of nanomaterials and nanosystems. <i>Advanced Materials</i> , 2012 , 24, 158-76	24	353
356	25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. <i>Advanced Materials</i> , 2013 , 25, 6477-512	24	345
355	Enzyme nanoarchitectonics: organization and device application. <i>Chemical Society Reviews</i> , 2013 , 42, 6322-45	58.5	330
354	Molecular recognition: from solution science to nano/materials technology. <i>Chemical Society Reviews</i> , 2012 , 41, 5800-35	58.5	321
353	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. <i>NPG Asia Materials</i> , 2012 , 4, e17-e17	10.3	305
352	Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9737-9	16.4	276
351	Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 1-13	1.3	272
350	Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10580-611	3.6	268
349	Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 9713-46	3.6	265
348	Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. <i>Nano Today</i> , 2015 , 10, 138-167	17.9	238

(2009-2014)

347	Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. <i>Nano Today</i> , 2014 , 9, 378-394	17.9	210
346	Nanoarchitectonics: a new materials horizon for nanotechnology. <i>Materials Horizons</i> , 2015 , 2, 406-413	14.4	210
345	Self-assembly as a key player for materials nanoarchitectonics. <i>Science and Technology of Advanced Materials</i> , 2019 , 20, 51-95	7.1	204
344	Inorganic Nanoarchitectonics for Biological Applications. <i>Chemistry of Materials</i> , 2012 , 24, 728-737	9.6	195
343	Soft Langmuir B lodgett Technique for Hard Nanomaterials. <i>Advanced Materials</i> , 2009 , 21, 2959-2981	24	190
342	Fullerene nanoarchitectonics: from zero to higher dimensions. Chemistry - an Asian Journal, 2013, 8, 166	52 ₄ . 7 9	182
341	Solvent engineering for shape-shifter pure fullerene (C60). <i>Journal of the American Chemical Society</i> , 2009 , 131, 6372-3	16.4	173
340	Coordination chemistry and supramolecular chemistry in mesoporous nanospace. <i>Coordination Chemistry Reviews</i> , 2007 , 251, 2562-2591	23.2	167
339	Selective, sensitive and reversible "turn-on" fluorescent cyanide probes based on 2,2'-dipyridylaminoanthracene-Cu2+ ensembles. <i>Chemical Communications</i> , 2012 , 48, 11513-5	5.8	165
338	Selective and sensitive "turn-on" fluorescent Zn2+ sensors based on di- and tripyrrins with readily modulated emission wavelengths. <i>Chemical Communications</i> , 2011 , 47, 5431-3	5.8	159
337	Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14478-9	16.4	159
336	Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. <i>Small</i> , 2011 , 7, 1288-308	11	150
335	Materials nanoarchitectonics for environmental remediation and sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2369-2377		147
334	Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on" cyanide probes. <i>Chemical Communications</i> , 2013 , 49, 10136-8	5.8	142
333	Two-dimensional nanoarchitectonics based on self-assembly. <i>Advances in Colloid and Interface Science</i> , 2010 , 154, 20-9	14.3	141
332	Stimuli-free auto-modulated material release from mesoporous nanocompartment films. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2376-7	16.4	135
331	Electrochemical-coupling layer-by-layer (ECC-LbL) assembly. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7348-51	16.4	131
330	Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. Journal of the American Chemical Society, 2009 , 131, 4220-1	16.4	131

329	One-pot separation of tea components through selective adsorption on pore-engineered nanocarbon, carbon nanocage. <i>Journal of the American Chemical Society</i> , 2007 , 129, 11022-3	16.4	130
328	A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7254-7	16.4	128
327	Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. Journal of the American Chemical Society, 2013 , 135, 586-9	16.4	125
326	Room temperature liquid fullerenes: an uncommon morphology of C60 derivatives. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10384-5	16.4	123
325	Bioinspired nanoarchitectonics as emerging drug delivery systems. <i>New Journal of Chemistry</i> , 2014 , 38, 5149-5163	3.6	118
324	A Polymer-Electrolyte-Based Atomic Switch. <i>Advanced Functional Materials</i> , 2011 , 21, 93-99	15.6	117
323	Gold Nanoparticles Aggregation: Drastic Effect of Cooperative Functionalities in a Single Molecular Conjugate. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 2683-2690	3.8	114
322	Hierarchically Structured Fullerene C70 Cube for Sensing Volatile Aromatic Solvent Vapors. <i>ACS Nano</i> , 2016 , 10, 6631-7	16.7	112
321	ECyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host-guest interactions with mechanical stimuli. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2155-2161	7.3	110
320	Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12868-70	16.4	105
319	Putting the 'N' in ACENE: pyrazinacenes and their structural relatives. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 5005-17	3.9	104
318	Biomaterials and biofunctionality in layered macromolecular assemblies. <i>Macromolecular Bioscience</i> , 2008 , 8, 981-90	5.5	104
317	Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Large-Scale Tissue Engineering. <i>Advanced Materials</i> , 2015 , 27, 4020-6	24	101
316	Layer-by-layer assembly for drug delivery and related applications. <i>Expert Opinion on Drug Delivery</i> , 2011 , 8, 633-44	8	100
315	Nanoporous carbon tubes from fullerene crystals as the Electron carbon source. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 951-5	16.4	96
314	Vortex-aligned fullerene nanowhiskers as a scaffold for orienting cell growth. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 15667-73	9.5	90
313	Block-copolymer-nanowires with nanosized domain segregation and high charge mobilities as stacked p/n heterojunction arrays for repeatable photocurrent switching. <i>Journal of the American Chemical Society</i> , 2009 , 131, 18030-1	16.4	90
312	NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. <i>Nature Communications</i> , 2013 , 4, 2188	17.4	88

(2012-2015)

311	Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8988-91	16.4	86	
310	Open-mouthed metallic microcapsules: exploring performance improvements at agglomeration-free interiors. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14415-7	16.4	86	
309	Anion-complexation-induced stabilization of charge separation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16138-46	16.4	85	
308	Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8426-30	16.4	84	
307	Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices. <i>Advances in Polymer Science</i> , 2010 , 51-87	1.3	82	
306	Hierarchic Nanostructure for Auto-Modulation of Material Release: Mesoporous Nanocompartment Films. <i>Advanced Functional Materials</i> , 2009 , 19, 1792-1799	15.6	79	
305	Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15424-15446	16.4	78	
304	Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions. <i>Chemistry of Materials</i> , 2014 , 26, 519-532	9.6	77	
303	Aligned 1-D nanorods of a Egelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8548-51	16.4	77	
302	Chiral sensing by nonchiral tetrapyrroles. <i>Accounts of Chemical Research</i> , 2015 , 48, 521-9	24.3	76	
301	Self-assembled microstructures of functional molecules. <i>Current Opinion in Colloid and Interface Science</i> , 2007 , 12, 106-120	7.6	76	
300	Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth. <i>ACS Nano</i> , 2016 , 10, 8796-802	16.7	75	
299	Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. <i>Soft Matter</i> , 2009 , 5, 3562	3.6	75	
298	Chiral recognition at the airWater interface. <i>Current Opinion in Colloid and Interface Science</i> , 2008 , 13, 23-30	7.6	72	
297	A paradigm shift in the field of molecular recognition at the air-water interface: from static to dynamic. <i>Soft Matter</i> , 2006 , 2, 465-477	3.6	71	
296	Materials self-assembly and fabrication in confined spaces. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10	389	67	
295	Low-temperature remediation of NO catalyzed by interleaved CuO nanoplates. <i>Advanced Materials</i> , 2014 , 26, 4481-5	24	66	
294	A mechanically controlled indicator displacement assay. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9643-6	16.4	66	

293	Interfacial nanoarchitectonics: lateral and vertical, static and dynamic. <i>Langmuir</i> , 2013 , 29, 8459-71	4	65
292	Chromogenic indicator for anion reporting based on an N-substituted oxoporphyrinogen. <i>Inorganic Chemistry</i> , 2006 , 45, 8288-96	5.1	65
291	Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced Electrochemical Supercapacitance. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 521-528	5.1	65
290	Tunable pK of amino acid residues at the air-water interface gives an L-zyme (langmuir enzyme). <i>Journal of the American Chemical Society</i> , 2005 , 127, 12074-80	16.4	64
289	Mesoporous graphitic carbon microtubes derived from fullerene C70 tubes as a high performance electrode material for advanced supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13899-1390	6 ¹³	64
288	Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6614-6619	13	63
287	Composite Nanoarchitectonics for Ternary Systems of Reduced Graphene Oxide/Carbon Nanotubes/Nickel Oxide with Enhanced Electrochemical Capacitor Performance. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 267-274	3.2	63
286	Layer-by-Layer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing. <i>Angewandte Chemie</i> , 2010 , 122, 9931-9933	3.6	63
285	Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at a liquid-liquid interface. <i>Langmuir</i> , 2013 , 29, 7195-202	4	62
284	Nuclear magnetic resonance signaling of molecular chiral information using an achiral reagent. Journal of the American Chemical Society, 2009 , 131, 9494-5	16.4	62
283	Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 12576-81	3.6	62
282	Alcohol-induced decomposition of Olmstead's crystalline Ag(I) B ullerene heteronanostructure yields B ucky cubes[] <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1174-1181	7.1	59
281	Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. <i>Science and Technology of Advanced Materials</i> , 2012 , 13, 053001	7.1	59
2 80	Langmuir monolayers of a cholesterol-armed cyclen complex that can control enantioselectivity of amino acid recognition by surface pressure. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4895-900	3.6	59
279	Research Update: Mesoporous sensor nanoarchitectonics. APL Materials, 2014, 2, 030701	5.7	57
278	Nanoporous carbon sensor with cage-in-fiber structure: highly selective aniline adsorbent toward cancer risk management. <i>ACS Applied Materials & District Materials & Company Company</i>	9.5	57
277	Dynamic breathing of CO2 by hydrotalcite. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18040-2	3 16.4	57
276	Intentional Closing/Opening of "Hole-in-Cube" Fullerene Crystals with Microscopic Recognition Properties. <i>ACS Nano</i> , 2017 , 11, 7790-7796	16.7	57

275	Control of nano/molecular systems by application of macroscopic mechanical stimuli. <i>Chemical Science</i> , 2011 , 2, 195-203	9.4	56
274	High purity graphenes prepared by a chemical intercalation method. <i>Nanoscale</i> , 2010 , 2, 2139-43	7.7	56
273	Highly nonplanar, electron deficient, N-substituted tetra-oxocyclohexadienylidene porphyrinogens: structural, computational, and electrochemical investigations. <i>Journal of Organic Chemistry</i> , 2004 , 69, 5861-9	4.2	56
272	Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 23658-23676	3.6	55
271	Shell-adjustable hollow BoftBilica spheres as a support for gold nanoparticles. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3600	13	55
270	Pyrazinacenes: aza analogues of acenes. <i>Journal of Organic Chemistry</i> , 2009 , 74, 8914-23	4.2	55
269	Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12654-12660	13	54
268	Self-assembly: from amphiphiles to chromophores and beyond. <i>Molecules</i> , 2014 , 19, 8589-609	4.8	54
267	Ubiquinone-rhodol (UQ-Rh) for fluorescence imaging of NAD(P)H through intracellular activation. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3993-5	16.4	53
266	Intelligent chiral sensing based on supramolecular and interfacial concepts. Sensors, 2010, 10, 6796-82	0 3.8	52
265	Evolution of molecular machines: from solution to soft matter interface. Soft Matter, 2012, 8, 15-20	3.6	51
264	Flake-shell capsules: adjustable inorganic structures. <i>Small</i> , 2012 , 8, 2345-9	11	51
263	Nanorod-Driven Orientational Control of Liquid Crystal for Polarization-Tailored Electro-Optic Devices. <i>Advanced Materials</i> , 2009 , 21, 989-993	24	51
262	Visual Detection of Cesium Ions in Domestic Water Supply or Seawater using a Nano-optode. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 678-683	5.1	49
261	Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. <i>Nano Letters</i> , 2015 , 15, 4793-8	11.5	49
260	Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide. <i>ACS Applied Materials & Discrete Section</i> , 18352-9	9.5	49
259	Multi-Dimensional Control of Surfactant-Guided Assemblies of Quantum Gold Particles. <i>Advanced Materials</i> , 2008 , 20, 4027-4032	24	49
258	Highly Networked Capsular Silica-Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. <i>ACS Applied Materials & Acetone Vapor Sensing</i> . <i>ACS Applied Materials & Acetone Vapor Sensing</i> .	9.5	48

257	Langmuir nanoarchitectonics: one-touch fabrication of regularly sized nanodisks at the air-water interface. <i>Langmuir</i> , 2013 , 29, 7239-48	4	48
256	How molecules accommodate a 2D crystal lattice mismatch: an unusual 'mixed' conformation of tetraphenylporphyrin. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 5034-7	3.6	48
255	Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate. <i>Advanced Materials</i> , 2020 , 32, e1905942	24	48
254	Supramolecular coordination assemblies of dinuclear Fe(III) complexes. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4187-92	16.4	47
253	Mesoporous fullerene C70 cubes with highly crystalline frameworks and unusually enhanced photoluminescence properties. <i>Materials Horizons</i> , 2018 , 5, 285-290	14.4	46
252	Graphene-carbon 2D heterostructures with hierarchically-porous P,N-doped layered architecture for capacitive deionization. <i>Chemical Science</i> , 2021 , 12, 10334-10340	9.4	45
251	Thin Film Nanoarchitectonics. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2015 , 25, 466-479	3.2	44
250	Naked-eye discrimination of methanol from ethanol using composite film of oxoporphyrinogen and layered double hydroxide. <i>ACS Applied Materials & Discrete M</i>	9.5	44
249	Operation of micro and molecular machines: a new concept with its origins in interface science. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4802-11	3.6	44
248	Modulation of Mesenchymal Stem Cells Mechanosensing at Fluid Interfaces by Tailored Self-Assembled Protein Monolayers. <i>Small</i> , 2019 , 15, e1804640	11	44
247	Surfactant-Triggered Nanoarchitectonics of Fullerene C Crystals at a Liquid-Liquid Interface. <i>Langmuir</i> , 2016 , 32, 12511-12519	4	43
246	By what means should nanoscaled materials be constructed: molecule, medium, or human?. <i>Nanoscale</i> , 2010 , 2, 198-214	7.7	43
245	Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44458-44465	9.5	43
244	Suppression of Myogenic Differentiation of Mammalian Cells Caused by Fluidity of a Liquid-Liquid Interface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 30553-30560	9.5	42
243	Regulating the stability of 2D crystal structures using an oxidation state-dependent molecular conformation. <i>Chemical Communications</i> , 2006 , 2320-2	5.8	42
242	Thermolysis of a hybrid organic-inorganic supramolecular coordination assembly: templating the formation of nanostructured fibrous materials and carbon-based microcapsules. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7048-53	16.4	42
241	Self-Assembly Structures of a Phenol-Substituted Porphyrin in the Solid State: Hydrogen Bonding, Kagom[Lattice, and Defect Tolerance. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16174-16180	3.8	41
240	Colorimetric detection of trace water in tetrahydrofuran using N,N'-substituted oxoporphyrinogens. <i>Chemical Communications</i> , 2012 , 48, 3933-5	5.8	40

239	The Simplest Layer-by-Layer Assembly Structure: Best Paired Polymer Electrolytes with One Charge per Main Chain Carbon Atom for Multilayered Thin Films. <i>Macromolecules</i> , 2010 , 43, 3947-3955	5.5	40
238	Molecular Engineering Combined with Cosensitization Leads to Record Photovoltaic Efficiency for Non-ruthenium Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2976-8	16.4	40
237	Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire. <i>ACS Applied Materials & Distriction (Control of the Control o</i>	9.5	39
236	Mechanically Induced Opening-Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. <i>ChemPhysChem</i> , 2017 , 18, 1470-1474	3.2	39
235	Recent developments in supramolecular approach for nanocomposites. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 21-33	1.3	39
234	Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5737-5744	13	38
233	Langmuir films of unusual components. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 3-18	1.3	38
232	Strategies for producing cluster-based magnetic arrays. <i>Polyhedron</i> , 2001 , 20, 1687-1697	2.7	38
231	Monolayers at air-water interfaces: from origins-of-life to nanotechnology. <i>Chemical Record</i> , 2011 , 11, 199-211	6.6	37
230	Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. <i>ACS Applied Materials & Detection of ethanol in a nanofibrous polymer. ACS Applied Materials & Detection of ethanol in a nanofibrous polymer. ACS Applied Materials & Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. <i>ACS Applied Materials & Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. ACS Applied Materials & Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer. <i>ACS Applied Materials & Detection of the European Company of the Euro</i></i></i>	9.5	36
229	Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C/C alcohol discrimination. <i>Science and Technology of Advanced Materials</i> , 2016 , 17, 483-492	7.1	36
228	Chiral guest binding as a probe of macrocycle dynamics and tautomerism in a conjugated tetrapyrrole. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2112-8	16.4	36
227	Bioactive flake-shell capsules: soft silica nanoparticles for efficient enzyme immobilization. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3248-3256	7.3	36
226	Real time self-assembly and reassembly of molecular nanowires of trigeminal amphiphile porphyrins. <i>Chemical Communications</i> , 2011 , 47, 2285-7	5.8	36
225	Supramolecular triad and pentad composed of zinc-porphyrin(s), oxoporphyrinogen, and fullerene(s): design and electron-transfer studies. <i>Chemistry - A European Journal</i> , 2007 , 13, 4628-35	4.8	36
224	Molecular rotors confined at an ordered 2D interface. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 30	073 . 807	835
223	From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. <i>ACS Applied Materials & Description of Materials & Des</i>	9.5	35
222	Nanoarchitectonics of molecular aggregates: science and technology. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 390-401	1.3	35

221	Enhanced photocurrents via redox modulation by fluoride binding to oxoporphyrinogen in a zinc porphyrin-oxoporphyrinogen surface modified TiO2 supramolecular solar cell. <i>Chemical Communications</i> , 2011 , 47, 6003-5	5.8	35
220	Selective CO Capture and High Proton Conductivity of a Functional Star-of-David Catenane Metal-Organic Framework. <i>Advanced Materials</i> , 2017 , 29, 1703301	24	34
219	Developments in Molecular Recognition and Sensing at Interfaces. <i>International Journal of Molecular Sciences</i> , 2007 , 8, 864-883	6.3	34
218	Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms. <i>ACS Nano</i> , 2014 , 8, 5240-8	16.7	33
217	Silica-based gene reverse transfection: an upright nanosheet network for promoted DNA delivery to cells. <i>Chemical Communications</i> , 2012 , 48, 8496-8	5.8	32
216	Ultranarrow PbS Nanorod-Nematic Liquid Crystal Blend for Enhanced Electro-optic Properties. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 2, 2759-2766	9.5	32
215	Structures, Spectral and Electrochemical Properties of N-(Naphth-2-ylmethyl)-Appended Porphyrinogens. <i>European Journal of Organic Chemistry</i> , 2005 , 2005, 2893-2902	3.2	32
214	Micrometer-level naked-eye detection of caesium particulates in the solid state. <i>Science and Technology of Advanced Materials</i> , 2013 , 14, 015002	7.1	31
213	Cation-pi binding of an alkali metal ion by pendant alpha, alpha-dimethylbenzyl groups within a dinuclear iron(III) structural unit. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11142-3	16.4	31
212	Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals. <i>Nanotechnology</i> , 2015 , 26, 204002	3.4	30
211	Intracellular imaging of cesium distribution in Arabidopsis using Cesium Green. <i>ACS Applied Materials & Distribution Mat</i>	9.5	30
210	Reversible photoredox switching of porphyrin-bridged bis-2,6-di-tert-butylphenols. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16119-26	16.4	30
209	Twisted, Two-Faced Porphyrins as Hosts for Bispyridyl Fullerenes: Construction and Photophysical Properties. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 10559-10572	3.8	30
208	Real-time STM observation of molecular dynamics on a metal surface. Surface Science, 2007, 601, 3984-3	<u>9.</u> 87	30
207	Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26528-2	16.4 26534	30
206	Substrate-Mediated C-C and C-H Coupling after Dehalogenation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3669-3675	16.4	29
205	Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. <i>ACS Nano</i> , 2019 , 13, 2410-2419	16.7	29
204	Porphyrin colorimetric indicators in molecular and nano-architectures. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 2969-93	1.3	29

(2012-2005)

203	Effect of guest capture modes on molecular recognition by a dynamic cavity array at the air-water interface: soft vs. tight and fast vs. slow. <i>Soft Matter</i> , 2005 , 1, 132-137	3.6	29
202	Supramolecular approaches to biological therapy. Expert Opinion on Biological Therapy, 2009 , 9, 307-20	5.4	28
201	Nanostructured microspheres of MnO2 formed by room temperature solution processing. <i>Chemical Communications</i> , 2008 , 383-5	5.8	28
2 00	Facile aerial oxidation of a porphyrin. Part 18. N-alkylation of the oxidised product derived from Meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin. <i>Journal of Heterocyclic Chemistry</i> , 1995 , 32, 97-	169	28
199	BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. <i>Journal of Solid State Chemistry</i> , 2019 , 269, 409-418	3.3	28
198	Large-Area Aligned Fullerene Nanocrystal Scaffolds as Culture Substrates for Enhancing Mesenchymal Stem Cell Self-Renewal and Multipotency. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6497-650	6 ^{5.6}	27
197	Fabrication of a nano-structured Pt-loaded cerium oxide nanowire and its anode performance in the methanol electro-oxidation reaction. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6262	13	27
196	Chirality sensing by nonchiral porphines. <i>Chemistry - A European Journal</i> , 2011 , 17, 3558-61	4.8	27
195	Toward volatile and nonvolatile molecular memories: fluorescence switching based on fluoride-triggered interconversion of simple porphyrin derivatives. <i>Chemistry - A European Journal</i> , 2009 , 15, 2486-90	4.8	26
194	Diverse self-assembly in soluble oligoazaacenes: a microscopy study. <i>Langmuir</i> , 2009 , 25, 8408-13	4	26
193	Highly effective electrochemical anion sensing based on oxoporphyrinogen. <i>Electrochemistry Communications</i> , 2007 , 9, 2751-2754	5.1	26
192	Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns Having Microscopic Recognition Properties. <i>ACS Nano</i> , 2019 , 13, 14005-14012	16.7	26
191	Defect-free exfoliation of graphene at ultra-high temperature. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 538, 127-132	5.1	24
190	Colorimetric visualization of acid-base equilibria in non-polar solvent. <i>Chemical Communications</i> , 2013 , 49, 6870-2	5.8	24
189	Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface. <i>Nanoscale Research Letters</i> , 2011 , 6, 304	5	24
188	Polyethylenes bearing a terminal porphyrin group. Chemical Communications, 2011, 47, 7057-9	5.8	24
187	Electrochemical Coupling Layer-by-layer (ECC-LbL) Assembly in Patterning Mode. <i>Chemistry Letters</i> , 2012 , 41, 383-385	1.7	23
186	Supramolecular approaches for drug development. Current Medicinal Chemistry, 2012, 19, 2388-98	4.3	23

185	Large-scale synthesis of WOxEDA nanobelts and their application as photoswitches. CrystEngComm, 2011 , 13, 2237	3.3	22
184	Soft Capsules, Hard Capsules, and Hybrid Capsules. <i>Soft Materials</i> , 2012 , 10, 387-412	1.7	22
183	Supramolecular chemistry in two dimensions: self-assembly and dynamic function. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1249-1257	1.6	22
182	A Novel Bis(zincporphyrin) Dxoporphyrinogen Donor Acceptor Triad: Synthesis, Electrochemical, Computational and Photochemical Studies. <i>European Journal of Organic Chemistry</i> , 2006 , 2006, 595-603	3.2	22
181	Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2017 , 27, 576-585	3.2	21
180	Spongelike Porous Silica Nanosheets: From "Soft" Molecular Trapping to DNA Delivery. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 4509-4518	9.5	21
179	Porphyrinoid rotaxanes: building a mechanical picket fence. <i>Chemical Science</i> , 2017 , 8, 6679-6685	9.4	21
178	Antioxidant-substituted tetrapyrazinoporphyrazine as a fluorescent sensor for basic anions. <i>Chemical Communications</i> , 2012 , 48, 3951-3	5.8	21
177	Large scale assembly of ordered donor-acceptor heterojunction molecular wires using the Langmuir-Blodgett technique. <i>Chemical Communications</i> , 2011 , 47, 6825-7	5.8	21
176	Post-assembly dimension-dependent face-selective etching of fullerene crystals. <i>Materials Horizons</i> , 2020 , 7, 787-795	14.4	21
175	Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates. <i>Chemistry - A European Journal</i> , 2016 , 22, 1301-1	1 2 .8	20
174	Alkyl imidazolium ionic-liquid-mediated formation of gold particle superstructures. <i>Langmuir</i> , 2013 , 29, 7186-94	4	20
173	Self-assembled pyrazinacene nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4868-76	3.6	20
172	Alkylation of 5,10,15-tris(3,5-di-Ebutyl-4-hydroxyphenyl)-20-(4-pyridyl)porphyrin <i>Tetrahedron</i> , 1994 , 50, 13477-13484	2.4	20
171	In situ 2D-extraction of DNA wheels by 3D through-solution transport. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 32122-5	3.6	19
170	Electrochemical synthesis of transparent, amorphous, CEich, photoactive, and low-doped film with an interconnected structure. <i>Small</i> , 2013 , 9, 2064-8	11	19
169	Mechanochemical Tuning of the Binaphthyl Conformation at the Air Water Interface. <i>Angewandte Chemie</i> , 2015 , 127, 9116-9119	3.6	19

(2007-2013)

167	Hydrogen-bond-driven 'homogeneous intercalation' for rapid, reversible, and ultra-precise actuation of layered clay nanosheets. <i>Chemical Communications</i> , 2013 , 49, 3631-3	5.8	19
166	Designing Lower Critical Solution Temperature Behavior into a Discotic Small Molecule. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1336-1340	6.4	19
165	Decomposition of dinuclear manganese complexes for the preparation of nanostructured oxide materials. <i>Inorganic Chemistry</i> , 2008 , 47, 8306-14	5.1	19
164	Emission Control by Molecular Manipulation of Double-Paddled Binuclear Pt Complexes at the Air-Water Interface. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 406-414	4.5	19
163	Hierarchical heterostructure of Ag-nanoparticle decorated fullerene nanorods (Ag-FNRs) as an effective single particle freestanding SERS substrate. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 188	7 ³ 5-188	3 7 8
162	Simple Fabrication of Titanium Dioxide/N-Doped Carbon Hybrid Material as Non-Precious Metal Electrocatalyst for the Oxygen Reduction Reaction. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 187	782 ⁵ 18	7 8 9
161	Porphyrin/Platinum(II) C^N^N Acetylide Complexes: Synthesis, Photophysical Properties, and Singlet Oxygen Generation. <i>Chemistry - A European Journal</i> , 2016 , 22, 4164-74	4.8	18
160	Graphene composites with dental and biomedical applicability. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 801-808	3	18
159	New synthesis of unsymmetrically-substituted 2,5-diarylpyrroles from homopropargyl sulfonamides. <i>RSC Advances</i> , 2014 , 4, 4897	3.7	18
158	Nonionic reverse micelle formulation and their microstructure transformations in an aromatic solvent ethylbenzene. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 414, 140-	150	18
157	Manipulation of thin film assemblies: Recent progress and novel concepts. <i>Current Opinion in Colloid and Interface Science</i> , 2011 , 16, 459-469	7.6	18
156	Supramolecular Materials from Inorganic Building Blocks. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2010 , 20, 1-9	3.2	18
155	Porous framework materials for singlet oxygen generation. <i>Coordination Chemistry Reviews</i> , 2020 , 425, 213541	23.2	18
154	Media-dependent morphology of supramolecular aggregates of Etyclodextrin-grafted chitosan and insulin through multivalent interactions. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 1802-1812	7.3	17
153	Self-assembled fullerene nanostructures. <i>Journal of Oleo Science</i> , 2013 , 62, 541-53	1.6	17
152	High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. <i>Nanomaterials</i> , 2020 , 10,	5.4	17
151	Breaking aggregation in a tetrathiafulvalene-fused zinc porphyrin by metal-ligand coordination to form a donor-acceptor hybrid for ultrafast charge separation and charge stabilization. <i>Dalton Transactions</i> , 2015 , 44, 359-67	4.3	16
150	Tautomerism in novel oxocorrologens. <i>Chemistry - A European Journal</i> , 2007 , 13, 9824-33	4.8	16

149	Fine-tuning supramolecular assemblies of fullerenes bearing long alkyl chains. <i>Thin Solid Films</i> , 2008 , 516, 2401-2406	2.2	16
148	Mechanical Tuning of Through-Molecule Conductance in a Conjugated Calix[4]pyrrole. <i>ChemistrySelect</i> , 2018 , 3, 6473-6478	1.8	15
147	Tautomerism in Reduced Pyrazinacenes. Journal of Chemical Theory and Computation, 2010, 6, 517-25	6.4	15
146	Growth and electrical properties of N,N?-bis(n-pentyl)terrylene- 3,4:11,12-tetracarboximide thin films. <i>Applied Physics Letters</i> , 2008 , 92, 163301	3.4	15
145	Nanoporous Carbon Tubes from Fullerene Crystals as the Œlectron Carbon Source. <i>Angewandte Chemie</i> , 2015 , 127, 965-969	3.6	14
144	Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations. <i>Ceramics International</i> , 2015 , 41, 9426-9432	5.1	14
143	Acid/base switching of the tautomerism and conformation of a dioxoporphyrin for integrated binary subtraction. <i>Chemistry - A European Journal</i> , 2014 , 20, 12910-6	4.8	14
142	Controlling porphyrin nanoarchitectures at solid interfaces. <i>Langmuir</i> , 2013 , 29, 7291-9	4	14
141	A Mechanically Controlled Indicator Displacement Assay. <i>Angewandte Chemie</i> , 2012 , 124, 9781-9784	3.6	14
140	Structural study of the thermally induced and photoinduced phase transitions of the 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) radical. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 6449-55	2.8	14
139	Macaroni Fullerene Crystals-Derived Mesoporous Carbon Tubes as the High Rate Performance Supercapacitor Electrode Material. <i>Bulletin of the Chemical Society of Japan</i> ,	5.1	14
138	Determination of blood potassium using a fouling-resistant PVDFHFP-based optode. <i>RSC Advances</i> , 2016 , 6, 14261-14265	3.7	13
137	Multinuclear solid-state NMR spectroscopy of a paramagnetic layered double hydroxide. <i>RSC Advances</i> , 2013 , 3, 19857	3.7	13
136	Arylpyrrole oligomers as tunable anion receptors. Organic and Biomolecular Chemistry, 2014 , 12, 5492-9	3.9	13
135	Effect of anion binding on charge stabilization in a bis-fullerene-oxoporphyrinogen conjugate. <i>Chemical Communications</i> , 2010 , 46, 7933-5	5.8	13
134	Facile aerial oxidation of porphyrins. Part 16. Phenolic porphyrins without tert-butyl substituents. Journal of the Chemical Society Perkin Transactions II, 1994 , 521		13
133	Formation of hydroxyl radicals during the facile aerial oxidation of a phenolic porphyrin. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 773		13
132	Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. <i>Angewandte Chemie</i> , 2016 , 128, 8566-8570	3.6	13

131	Multimodal switching of a redox-active macrocycle. <i>Nature Communications</i> , 2019 , 10, 1007	17.4	13
130	Conformational interchange of a carbohydrate by mechanical compression at the air-water interface. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10286-94	3.6	12
129	Light-harvesting nanorods based on pheophorbide-appending cellulose. <i>Biomacromolecules</i> , 2013 , 14, 3223-30	6.9	12
128	Manipulation of shell morphology of silicate spheres from structural evolution in a purely inorganic system. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1379-86	4.5	12
127	Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. <i>Thin Solid Films</i> , 2014 , 554, 32-40	2.2	12
126	One-touch Nanofabrication of Regular-sized Disks through Interfacial Dewetting and Weak Molecular Interaction. <i>Chemistry Letters</i> , 2012 , 41, 170-172	1.7	12
125	Structure and rheology of reverse micelles in dipentaerythrityl tri-(12-hydroxystearate)/oil systems. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4911-8	3.6	12
124	Hydrogen-bond-assisted "gold cold fusion" for fabrication of 2D web structures. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 1055-8	4.5	12
123	Self-assembly of FeIII complexes via hydrogen bonded water molecules into supramolecular coordination networks. <i>New Journal of Chemistry</i> , 2007 , 31, 1882	3.6	12
122	Absorption and Fluorescence Features of an Amphiphilic meso-Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 8614-8624	2.8	11
121	Structural Modulation of Chromic Response: Effects of Binding-Site Blocking in a Conjugated Calix[4]pyrrole Chromophore. <i>ChemistryOpen</i> , 2018 , 7, 323-335	2.3	11
120	Surface Oxidized Carbon Nanotubes Uniformly Coated with Nickel Ferrite Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2016 , 26, 1301-1308	3.2	11
119	Fabrication of Silica-Protein Hierarchical Nanoarchitecture with Gas-Phase Sensing Activity. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 5908-5917	1.3	11
118	New aspects of porphyrins and related compounds: self-assembled structures in two-dimensional molecular arrays. <i>Journal of Porphyrins and Phthalocyanines</i> , 2009 , 13, 22-34	1.8	11
117	Two-dimensional molecular array of porphyrin derivatives with bright and dark spots as a model of two-digit molecular-dot memory. <i>Synthetic Metals</i> , 2009 , 159, 765-768	3.6	11
116	Self-assembly of optical molecules with supramolecular concepts. <i>International Journal of Molecular Sciences</i> , 2009 , 10, 1950-66	6.3	11
115	Evidence for a ball-shaped cyclen cyclophane: an experimental and first principles study. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 6038-41	3.6	11
114	Form factor of anN-layered helical tape and its application to nanotube formation of hexa-peri-hexabenzocoronene-based molecules. <i>Journal of Applied Crystallography</i> , 2010 , 43, 850-857	3.8	11

113	Site-specific labeling of proteins with cyclen-bound transition metal ions. <i>Inorganica Chimica Acta</i> , 2002 , 331, 123-130	2.7	11
112	Nanostructured polymeric yolkEhell capsules: a versatile tool for hierarchical nanocatalyst design. Journal of Materials Chemistry A, 2016 , 4, 9850-9857	13	11
111	Knock-on synthesis of tritopic calix[4]pyrrole host for enhanced anion interactions. <i>Dalton Transactions</i> , 2019 , 48, 15583-15596	4.3	10
110	Dynamic Processes in Prochiral Solvating Agents (pro-CSAs) Studied by NMR Spectroscopy. <i>Symmetry</i> , 2014 , 6, 345-367	2.7	10
109	Carbon nanocage: super-adsorber of intercalators for DNA protection. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3084-90	1.3	10
108	Base-selective adsorption of nucleosides to pore-engineered nanocarbon, carbon nanocage. Journal of Nanoscience and Nanotechnology, 2011 , 11, 3959-64	1.3	10
107	Anchoring of self-assembled monolayers of unsymmetrically-substituted chromophores with an oxoporphyrinogen surface clamp. <i>Chemical Communications</i> , 2011 , 47, 8533-5	5.8	10
106	Studies on Langmuir monolayers of polyprenyl phosphates towards a possible scenario for origin of life. <i>Colloids and Surfaces B: Biointerfaces</i> , 2009 , 74, 426-35	6	10
105	Dynamic supramolecular systems at interfaces. Supramolecular Chemistry, 2011, 23, 183-194	1.8	10
104	Probing the micro-phase separation of thermo-responsive amphiphilic polymer in water/ethanol solution. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 8408-16	1.3	10
103	Macroporous poly(aromatic amine): Synthesis and film fabrication. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 354, 156-161	5.1	10
102	Aerial oxidation kinetics of a phenolic porphyrin in acid solution. <i>Journal of Heterocyclic Chemistry</i> , 1993 , 30, 1629-1633	1.9	10
101	Supramolecular Chemistry as a Versatile Tool for Advanced Sciences in Nanospace. <i>Advanced Science Letters</i> , 2008 , 1, 28-58	0.1	10
100	Pyren-1-ylmethyl N-substituted oxoporphyrinogens. <i>Journal of Porphyrins and Phthalocyanines</i> , 2007 , 11, 390-396	1.8	9
99	Helicity Manipulation of a Double-Paddled Binaphthyl in a Two-Dimensional Matrix Field at the Air-Water Interface. <i>ACS Nano</i> , 2020 , 14, 13294-13303	16.7	9
98	Fluoride-ion-binding promoted photoinduced charge separation in a self-assembled C alkyl cation bound bis-crown ether-oxoporphyrinogen supramolecule. <i>Chemical Communications</i> , 2018 , 54, 1351-13	5 4 ⁸	8
97	Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 513	0-7	8
96	Morphology Adjustable Silica Nanosheets for Immobilization of Gold Nanoparticles. <i>ChemistrySelect</i> , 2017 , 2, 5793-5799	1.8	8

95	Tautomers of extended reduced pyrazinacenes: a density-functional-theory based study. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2145-50	3.6	8
94	Supramolecular Coordination Assemblies of Dinuclear FeIII Complexes. <i>Angewandte Chemie</i> , 2005 , 117, 4259-4264	3.6	8
93	Molecular Engineering of Esubstituted Oxoporphyrinogens for Hydrogen-Bond Donor Catalysis. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 82-90	3.2	8
92	Nanoarchitecturing Carbon Nanodot Arrays on Zeolitic Imidazolate FrameworkDerived CobaltNitrogenDoped Carbon Nanoflakes toward Oxygen Reduction Electrocatalysts. <i>ACS Nano</i> , 2021 ,	16.7	8
91	Totally Phospholipidic Mesoporous Particles. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 7255-7263	3.8	7
90	Nanoarchitektonik als ein Ansatz zur Erzeugung biofinlicher hierarchischer Organisate. <i>Angewandte Chemie</i> , 2020 , 132, 15550-15574	3.6	7
89	NMR Spectroscopic Determination of Enantiomeric Excess Using Small Prochiral Molecules. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 5114-5120	3.4	7
88	Fluorescent mesomorphic pyrazinacenes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 11514-11523	7.1	7
87	Mixing antisolvents induced modulation in the morphology of crystalline C60. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6380-4	1.3	7
86	Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. <i>Angewandte Chemie</i> , 2021 , 133, 26732	3.6	7
85	Supramolecular Approaches to Nanotechnology: Switching Properties and Dynamic Functions. <i>Current Organic Chemistry</i> , 2011 , 15, 3719-3733	1.7	7
84	Quinone-Facilitated Coordinated Bipyrene and Polypyrene on Au(111) by Capture of Gold Adatoms. Journal of Physical Chemistry C, 2019 , 123, 16281-16287	3.8	6
83	Supramolecular ultrafast energy and electron transfer in a directly linked BODIPY-oxoporphyrinogen dyad upon fluoride ion binding. <i>Chemical Communications</i> , 2020 , 56, 3855-3	8 5 8	6
82	Anion binding, electrochemistry and solvatochromism of Ebrominated oxoporphyrinogens. <i>Dalton Transactions</i> , 2016 , 45, 4006-16	4.3	6
81	Self-assembly of a mononuclear [Fe(III)(L)(EtOH)2] complex bearing an n-dodecyl chain on solid highly oriented pyrolytic graphite surfaces. <i>Chemistry - A European Journal</i> , 2012 , 18, 16419-25	4.8	6
80	Structures and properties of hemiquinone-substituted oxoporphyrinogens. <i>Journal of Porphyrins and Phthalocyanines</i> , 2009 , 13, 60-69	1.8	6
79	Evidence for solid state electronic conductivity in mixtures of a porphyrin and its two-electron oxidation product. <i>Advanced Materials for Optics and Electronics</i> , 1993 , 2, 143-147		6
78	Fabrication and characterization of branched carbon nanostructures. <i>Beilstein Journal of Nanotechnology</i> , 2016 , 7, 1260-1266	3	6

77	Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19570-19574	16.4	6
76	Improving the Colloidal Stability of Temperature-Sensitive Poly(-isopropylacrylamide) Solutions Using Low Molecular Weight Hydrophobic Additives. <i>ACS Omega</i> , 2018 , 3, 11865-11873	3.9	6
75	Nanoarchitectonics of Lotus Seed Derived Nanoporous Carbon Materials for Supercapacitor Applications. <i>Materials</i> , 2020 , 13,	3.5	5
74	Phenanthroline-Fused Pyrazinacenes: One-Pot Synthesis, Tautomerization and a Rull(2,2?-bpy)2 Derivative. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 2541-2548	2.3	5
73	Selective octabromination of tetraarylporphyrins based on meso-substituent identity: Structural and electrochemical studies. <i>Journal of Porphyrins and Phthalocyanines</i> , 2016 , 20, 213-222	1.8	5
72	Hollow Capsules Fabricated by Template Polymerization of N-Vinylcaprolactam. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 2389-93	1.3	5
71	Ubiquinone-Rhodol (UQ-Rh) for Fluorescence Imaging of NAD(P)H through Intracellular Activation. <i>Angewandte Chemie</i> , 2014 , 126, 4074-4076	3.6	5
70	Unexpected but convenient synthesis of soluble meso-tetrakis(3,4-benzoquinone)-substituted porphyrins. <i>Journal of Porphyrins and Phthalocyanines</i> , 2014 , 18, 173-181	1.8	5
69	Multicolour fluorescent memory based on the interaction of hydroxy terphenyls with fluoride anions. <i>Chemistry - A European Journal</i> , 2014 , 20, 16293-300	4.8	5
68	Crystallographic phase induced electro-optic properties of nanorod blend nematic liquid crystal. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 7729-34	1.3	5
67	Hierarchic Template Approach for Synthesis of Silica Nanocapsules with Tuned Shell Thickness. <i>Chemistry Letters</i> , 2011 , 40, 840-842	1.7	5
66	Variable temperature characterization of N,N?-Bis(n-pentyl)terrylene-3,4:11,12-tetracarboxylic diimide thin film transistor. <i>Organic Electronics</i> , 2009 , 10, 1187-1190	3.5	5
65	Ag Nanoparticle-Poly(acrylic acid) Composite Film with Dynamic Plasmonic Properties. <i>Australian Journal of Chemistry</i> , 2012 , 65, 1223	1.2	5
64	Stable pseudotetrahedral supermolecules based on an oxoporphyrinogen. <i>Tetrahedron Letters</i> , 2010 , 51, 2935-2938	2	5
63	Thermolysis of a Hybrid OrganicIhorganic Supramolecular Coordination Assembly: Templating the Formation of Nanostructured Fibrous Materials and Carbon-Based Microcapsules. <i>Angewandte Chemie</i> , 2005 , 117, 7210-7215	3.6	5
62	Pyrazinacenes exhibit on-surface oxidation-state-dependent conformational and self-assembly behaviours. <i>Communications Chemistry</i> , 2021 , 4,	6.3	5
61	Electro-click construction of hybrid nanocapsule films with triggered delivery properties. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 2761-2770	3.6	4
60	Rekordeffizienz ffl Ruthenium-freie Solarzellen durch eine Kombination aus Molecular Engineering und Cosensitivierung. <i>Angewandte Chemie</i> , 2016 , 128, 3028-3030	3.6	4

(2012-2014)

59	Layer-by-layer growth of precisely controlled hetero-molecular multi-layers and superlattice structures. <i>Thin Solid Films</i> , 2014 , 554, 74-77	2.2	4
58	Ligand displacement for fixing manganese: relevance to cellular metal ion transport and synthesis of polymeric coordination complexes. <i>Dalton Transactions</i> , 2013 , 42, 2779-85	4.3	4
57	Novel Concepts for Organic Syntheses Based on Interfaces and Molecular Machines. <i>Current Organic Synthesis</i> , 2012 , 9, 428-438	1.9	4
56	Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess. <i>Frontiers of Chemical Science and Engineering</i> , 2020 , 14, 28-40	4.5	4
55	Selective Phase Transfer Reagents (OxP-crowns) for Chromogenic Detection of Nitrates Especially Ammonium Nitrate. <i>Chemistry - A European Journal</i> , 2020 , 26, 13177-13183	4.8	4
54	Monitoring the Release of Silver from a Supramolecular Fullerene C60-AgNO3 Nanomaterial. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 1347-1354	5.1	4
53	The Pyrazinacenes. Accounts of Chemical Research, 2021, 54, 3228-3240	24.3	4
52	Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes. <i>Chemical Science</i> , 2020 , 11, 2614-2620	9.4	3
51	Novel solid-state luminous composites from a layered inorganic@rganic monolith containing neutral porphyrins. <i>Journal of Materials Science</i> , 2017 , 52, 12156-12169	4.3	3
50	81 Structures and Properties of Non-Planar Tetrapyrroles. <i>Handbook of Porphyrin Science</i> , 2012 , 123-16	70.3	3
		J	
49	Hydrogen-bonded chain structure of a six-coordinate 5,10,15,20-tetraphenylporphinatomanganese(III) complex. <i>Inorganica Chimica Acta</i> , 2001 , 315, 107-111	2.7	3
49		2.7	3
	5,10,15,20-tetraphenylporphinatomanganese(III) complex. <i>Inorganica Chimica Acta</i> , 2001 , 315, 107-111 Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular		
48	5,10,15,20-tetraphenylporphinatomanganese(III) complex. <i>Inorganica Chimica Acta</i> , 2001 , 315, 107-111 Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination. <i>Advanced Materials Interfaces</i> ,2102241 High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from	4.6	3
48	5,10,15,20-tetraphenylporphinatomanganese(III) complex. <i>Inorganica Chimica Acta</i> , 2001 , 315, 107-111 Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination. <i>Advanced Materials Interfaces</i> ,2102241 High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from Artocarpus heterophyllus Seed. <i>ACS Applied Energy Materials</i> , meso-Tetraphenylporphine as a prochiral solvating agent (pro-CSA): A physicochemical study.	4.6 6.1	3
48 47 46	5,10,15,20-tetraphenylporphinatomanganese(III) complex. <i>Inorganica Chimica Acta</i> , 2001 , 315, 107-111 Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination. <i>Advanced Materials Interfaces</i> ,2102241 High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from Artocarpus heterophyllus Seed. <i>ACS Applied Energy Materials</i> , meso-Tetraphenylporphine as a prochiral solvating agent (pro-CSA): A physicochemical study. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 320-329 Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation	4.6 6.1 1.8	3 3
48 47 46 45	5,10,15,20-tetraphenylporphinatomanganese(III) complex. <i>Inorganica Chimica Acta</i> , 2001 , 315, 107-111 Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination. <i>Advanced Materials Interfaces</i> ,2102241 High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from Artocarpus heterophyllus Seed. <i>ACS Applied Energy Materials</i> , meso-Tetraphenylporphine as a prochiral solvating agent (pro-CSA): A physicochemical study. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 320-329 Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation and Bubstitution. <i>Journal of Porphyrins and Phthalocyanines</i> , 2019 , 23, 1184-1194 Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull	4.6 6.1 1.8	3333

41	Nanophotonics and supramolecular chemistry. <i>Nanophotonics</i> , 2013 , 2, 265-277	6.3	2
40	Nanostructured manganese oxide particles from coordination complex decomposition and their catalytic properties for ethanol oxidation. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 8087-9	3 ^{1.3}	2
39	Development of polymer electrolytes based resistive switch 2009,		2
38	1,4-Bis-(4-toluenesulphonyl)-1,4,7,10-tetraazacyclododecane from the direct tosylation of 1,4,7,10-tetraazacyclododecane. <i>Tetrahedron Letters</i> , 2002 , 43, 7301-7302	2	2
37	Phenyl-Modified Carbon Nitride Quantum Nanoflakes for Ultra-Highly Selective Sensing of Formic Acid: A Combined Experimental by QCM and Density Functional Theory Study. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 48595-48610	9.5	2
36	Enantiomeric Excess Dependent Splitting of NMR Signal through Dynamic Chiral Inversion and Coligand Exchange in a Coordination Complex. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 8164-816	6.4و	2
35	Estimation of Enantiomeric Excess Based on Rapid Host@uest Exchange. <i>Chemosensors</i> , 2021 , 9, 259	4	2
34	Ultra-durable, multi-template molecularly imprinted polymers for ultrasensitive monitoring and multicomponent quantification of trace sulfa antibiotics. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 3192	2-3:₹99	2
33	Rotaxanation as a sequestering template to preclude incidental metal insertion in complex oligochromophores. <i>Chemical Communications</i> , 2020 , 56, 7447-7450	5.8	1
32	Syntheses and structural characterization of amphiphilic mononuclear complexes [FeIII(L)(X)2] (X = Br, SCN). <i>Journal of Coordination Chemistry</i> , 2016 , 69, 3182-3191	1.6	1
31	Bioinspired Materials Chemistry I: Organic[horganic Nanocomposites 2012 , 121-138		1
30	Molecular alignment and energy-level diagram at heteromolecular interface of quaterrylene and terrylene-3,4,11,12-tetracarboximide. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 4888-92	1.3	1
29	Self-Assembled Nanoarchitectures: Thin-Film-Based Nanoarchitectures for Soft Matter: Controlled Assemblies into Two-Dimensional Worlds (Small 10/2011). <i>Small</i> , 2011 , 7, 1287-1287	11	1
28	Structural characterizations of diglycerol monomyristate reverse micelles in aromatic solvent ethylbenzene. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 3716-24	1.3	1
27	Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 7885-95	1.3	1
26	Pyrazinacene luminescence enhancement by heat-activated surface adsorption and de-aggregation in a saponite colloidal system. <i>Applied Clay Science</i> , 2022 , 218, 106413	5.2	1
25	Molecular rotor based on an oxidized resorcinarene. Organic Chemistry Frontiers,	5.2	1
24	Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. <i>Materials Today Chemistry</i> , 2021 , 21, 100534	6.2	1

23	Supramolecular Chemistry at the Mesoscale11-36		1
22	Disposable Nitric Oxide Generator Based on a Structurally Deformed Nitrite-Type Layered Double Hydroxide. <i>Inorganic Chemistry</i> , 2021 , 60, 16008-16015	5.1	O
21	Phase Separation and pH-Dependent Behavior of Four-Arm Star-Shaped Porphyrin-PNIPAM4 Conjugates. <i>Macromolecules</i> , 2022 , 55, 2109-2122	5.5	O
20	Evaluation of the effects of natural isoquinoline alkaloids on low density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) in hepatocytes, as new potential hypocholesterolemic agents <i>Bioorganic Chemistry</i> , 2022 , 121, 105686	5.1	O
19	Functional Nanomaterials Prepared by Nanoarchitectonics-Based Supramolecular Assembly. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2015 , 45-61	0.3	
18	Characterization of Branched Carbon Nanostructures 2016 , 468-469		
17	Reaction mediated artificial cell termination: control of vesicle viability using Rh(I)-catalyzed hydrogenation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16454-7	3.6	
16	Nanosystem Control: Mechanical Control of Nanomaterials and Nanosystems (Adv. Mater. 2/2012). <i>Advanced Materials</i> , 2012 , 24, 157-157	24	
15	Supramolecular Nanotechnology: Soft Assembly of Hard Nanomaterials 2015 , 95-108		
14	Life from Interface. Cellular Origin and Life in Extreme Habitats, 2012 , 237-252		
13	OrganicIhorganic Supramolecular Materials 2011 , 43-55		
12	RECENT DEVELOPMENTS ON PORPHYRIN ASSEMBLIES 2009 , 183-213		
11	Supramolecular Structures and Functions with Inorganic Building Blocks 2009 , 1-33		
10	RECENT DEVELOPMENTS ON PORPHYRIN ASSEMBLIES. Cosmos, 2008, 04, 141-171		
9	Cover Picture: Supramolecular Coordination Assemblies of Dinuclear FeIII Complexes (Angew. Chem. Int. Ed. 27/2005). <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4103-4103	16.4	
8	Titelbild: Supramolecular Coordination Assemblies of Dinuclear FeIII Complexes (Angew. Chem. 27/2005). <i>Angewandte Chemie</i> , 2005 , 117, 4173-4173	3.6	
7	Oxoporphyrinogens: Novel Dyes Based on the Fusion of Calix[4]pyrrole, Quinonoids and Porphyrins. <i>NIMS Monographs</i> , 2022 , 127-147	0.3	
6	Structural Design for Molecular Catalysts 2019 , 11-92		

5 Supermolecular Catalysts **2019**, 93-172

4	A Chemists Method for Making Pure Clean Graphene. Carbon Nanostructures, 2012, 129-136	0.6
3	Tautomerism in Oxoporphyrinogens and Pyrazinacenes 2016 , 203-228	
2	The Battery of Analytical Techniques Necessary for the Effective Characterization of Solutions of Temperature-Sensitive Polymers. <i>Reviews and Advances in Chemistry</i> , 2021 , 11, 100-111	O
1	Fullerphene Nanosheets: A Bottom-Up 2D Material for Single-Carbon-Atom-Level Molecular Discrimination (Adv. Mater. Interfaces 11/2022). <i>Advanced Materials Interfaces</i> , 2022 , 9, 2270062	4.6