Galina G Karabanovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/442068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of water-soluble prodrugs of the bisdioxopiperazine topoisomerase Ilβ inhibitor ICRF-193 as potential cardioprotective agents against anthracycline cardiotoxicity. Scientific Reports, 2021, 11, 4456.	1.6	6
2	Structure–Activity Relationship Study of Dexrazoxane Analogues Reveals ICRF-193 as the Most Potent Bisdioxopiperazine against Anthracycline Toxicity to Cardiomyocytes Due to Its Strong Topoisomerase IIβ Interactions. Journal of Medicinal Chemistry, 2021, 64, 3997-4019.	2.9	14
3	Prodrug of ICRF-193 provides promising protective effects against chronic anthracycline cardiotoxicity in a rabbit model <i>in vivo</i> . Clinical Science, 2021, 135, 1897-1914.	1.8	8
4	Clinically Translatable Prevention of Anthracycline Cardiotoxicity by Dexrazoxane Is Mediated by Topoisomerase II Beta and Not Metal Chelation. Circulation: Heart Failure, 2021, 14, e008209.	1.6	24
5	Investigation of Structure-Activity Relationships of Dexrazoxane Analogs Reveals Topoisomerase II <i>β</i> Interaction as a Prerequisite for Effective Protection against Anthracycline Cardiotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 402-415.	1.3	14
6	Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl-β- <scp>d</scp> -ribofuranose 2′-Oxidase. Journal of Medicinal Chemistry, 2019, 62, 8115-8139.	2.9	37
7	UHPLC-MS/MS method for analysis of sobuzoxane, its active form ICRF-154 and metabolite EDTA-diamide and its application to bioactivation study. Scientific Reports, 2019, 9, 4524.	1.6	2
8	79â€Effective cardioprotection against anthracycline cardiotoxicity in isolated cardiomyocytes and rabbits is based on dexrazoxane interaction with topoisomerase II beta instead of iron chelation by its metabolite ADR-925. , 2019, , .		0
9	Pharmacokinetics of the Cardioprotective Drug Dexrazoxane and Its Active Metabolite ADR-925 with Focus on Cardiomyocytes and the Heart. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 433-446.	1.3	15
10	Structure-activity relationship studies on 3,5-dinitrophenyl tetrazoles as antitubercular agents. European Journal of Medicinal Chemistry, 2017, 130, 419-432.	2.6	31
11	Investigation of novel dexrazoxane analogue JR-311 shows significant cardioprotective effects through topoisomerase llbeta but not its iron chelating metabolite. Toxicology, 2017, 392, 1-10.	2.0	25
12	Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Bioorganic and Medicinal Chemistry, 2017, 25, 5468-5476.	1.4	38
13	S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents. European Journal of Medicinal Chemistry, 2017, 126, 369-383.	2.6	50
14	Large-Scale Synthesis of Piperazine-2,6-dione and Its Use in the Synthesis of Dexrazoxane Analogues. Synthesis, 2016, 48, 4580-4588.	1.2	3
15	Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and Thiadiazoles as Selective Antitubercular Agents Active Against Replicating and Nonreplicating <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2016, 59, 2362-2380.	2.9	85
16	Tetrazole regioisomers in the development of nitro group-containing antitubercular agents. MedChemComm, 2015, 6, 174-181.	3.5	40
17	1-Substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles and their isosteric analogs: A new class of selective antitubercular agents active against drug-susceptible and multidrug-resistant mycobacteria. European Journal of Medicinal Chemistry, 2014, 82, 324-340.	2.6	44
18	One-pot synthesis of 1-substituted-5-alkylselanyl-1 H -tetrazoles from isoselenocyanates: unexpected formation of N -alkyl- N -arylcyanamides and (Z)- Se -alkyl- N -cyano- N , N′ -diarylisoselenoureas. Tetrahedron, 2013, 69, 8798-8808.	1.0	22

#	Article	IF	CITATIONS
19	Microwave-assisted synthesis of 2-aryl(hetaryl)-5-phenylamino-1,3,4-thiadiazoles from 5-substituted tetrazoles. Russian Journal of Organic Chemistry, 2009, 45, 631-632.	0.3	5
20	Tetrazoles: LV. Perparation of 2-anilino-5-aryl(hetaryl)-1,3,4-oxadiazoles from 5-substituted tetrazoles under microwave activation. Russian Journal of Organic Chemistry, 2009, 45, 1241-1243.	0.3	11