
Xianhong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4420542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unity Makes Strength: Constructing Polymeric Catalyst for Selective Synthesis of CO ₂ /Epoxide Copolymer. CCS Chemistry, 2023, 5, 750-760.	7.8	16
2	Chain-transfer-catalyst: strategy for construction of site-specific functional CO2-based polycarbonates. Science China Chemistry, 2022, 65, 162-169.	8.2	8
3	From Impossible to Possible: Atomâ€Economic Polymerization of Low Strain Fiveâ€Membered Carbonates. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
4	Iterative Synthesis of Stereo―and Sequenceâ€Defined Polymers <i>via</i> Acidâ€Orthogonal Deprotection Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
5	Iterative Synthesis of Stereo―and Sequenceâ€Defined Polymers <i>via</i> Acidâ€Orthogonal Deprotection Chemistry. Angewandte Chemie, 2022, 134, .	2.0	5
6	Switchable Polymerization Organocatalysis: From Monomer Mixtures to Block Copolymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
7	Facile Aluminum Porphyrin Complexes Enable Flexible Terminal Epoxides to Boost Properties of CO ₂ â€Polycarbonate. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	6
8	Aldehyde end-capped CO ₂ -based polycarbonates: a green synthetic platform for site-specific functionalization. Polymer Chemistry, 2022, 13, 1731-1738.	3.9	8
9	Environmentally benign metal catalyst for the ring-opening copolymerization of epoxide and CO2: state-of-the-art, opportunities, and challenges. Green Chemical Engineering, 2022, 3, 111-124.	6.3	14
10	Organocatalytic Copolymerization of Cyclic Lysine Derivative and Îμ-Caprolactam toward Antibacterial Nylon-6 Polymers. ACS Macro Letters, 2022, 11, 46-52.	4.8	14
11	On-Demand Transformation of Carbon Dioxide into Polymers Enabled by a Comb-Shaped Metallic Oligomer Catalyst. ACS Catalysis, 2022, 12, 481-490.	11.2	20
12	Incorporation of <scp>CO₂</scp> â€polyols into esterâ€based waterborne polyurethane: An effective strategy to improve overall performance. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
13	Two-in-One: Photothermal Ring-Opening Copolymerization of CO ₂ and Epoxides. ACS Macro Letters, 2022, 11, 941-947.	4.8	8
14	Unimolecular Anionâ€Binding Catalysts for Selective Ringâ€Opening Polymerization of <i>O</i> â€carboxyanhydrides. Angewandte Chemie - International Edition, 2021, 60, 6003-6012.	13.8	38
15	Unimolecular Anionâ€Binding Catalysts for Selective Ringâ€Opening Polymerization of O â€carboxyanhydrides. Angewandte Chemie, 2021, 133, 6068-6077.	2.0	13
16	Cationic polyurethane from CO ₂ -polyol as an effective barrier binder for polyaniline-based metal anti-corrosion materials. Polymer Chemistry, 2021, 12, 1950-1956.	3.9	6
17	Organocatalyzed Ring-Opening Polymerization of Cyclic Lysine Derivative: Sustainable Access to Cationic Poly(Îμ-lysine) Mimics. Macromolecules, 2021, 54, 2226-2231.	4.8	21
18	UV-curable cationic waterborne polyurethane from CO2-polyol with excellent water resistance. Polymer, 2021, 218, 123536.	3.8	15

#	Article	IF	CITATIONS
19	Carbon dioxide copolymers: Emerging sustainable materials for versatile applications. SusMat, 2021, 1, 88-104.	14.9	44
20	<i>S</i> â€Carboxyanhydrides: Ultrafast and Selective Ringâ€Opening Polymerizations Towards Wellâ€defined Functionalized Polythioesters. Angewandte Chemie, 2021, 133, 10893-10900.	2.0	13
21	<i>S</i> â€Carboxyanhydrides: Ultrafast and Selective Ringâ€Opening Polymerizations Towards Wellâ€defined Functionalized Polythioesters. Angewandte Chemie - International Edition, 2021, 60, 10798-10805.	13.8	39
22	Cobaltâ€Mediated Switchable Catalysis for the Oneâ€Pot Synthesis of Cyclic Polymers. Angewandte Chemie - International Edition, 2021, 60, 16974-16979.	13.8	23
23	Cobaltâ€Mediated Switchable Catalysis for the Oneâ€Pot Synthesis of Cyclic Polymers. Angewandte Chemie, 2021, 133, 17111-17116.	2.0	7
24	Oâ€ŧoâ€5 Substitution Enables Dovetailing Conflicting Cyclizability, Polymerizability, and Recyclability: Dithiolactone vs. Dilactone. Angewandte Chemie - International Edition, 2021, 60, 22547-22553.	13.8	82
25	Construction of Selfâ€Reporting Biodegradable CO 2 â€Based Polycarbonates for the Visualization of Thermoresponsive Behavior with Aggregationâ€induced Emission Technology â€. Chinese Journal of Chemistry, 2021, 39, 3037.	4.9	4
26	Oâ€ŧoâ€5 Substitution Enables Dovetailing Conflicting Cyclizability, Polymerizability, and Recyclability: Dithiolactone vs. Dilactone. Angewandte Chemie, 2021, 133, 22721-22727.	2.0	16
27	Near neutral waterborne cationic polyurethane from CO ₂ -polyol, a compatible binder to aqueous conducting polyaniline for eco-friendly anti-corrosion purposes. Green Chemistry, 2020, 22, 7823-7831.	9.0	11
28	Deciphering Structure–Functionality Relationship of Polycarbonate-Based Polyelectrolytes by AIE Technology. Macromolecules, 2020, 53, 5839-5846.	4.8	16
29	Organocatalytic Polymerization of Morpholine-2,5-diones toward Methionine-Containing Poly(ester) Tj ETQq1 1	0.784314 4.8	rgBT /Over
30	Terminal Hydrophilicity-Induced Dispersion of Cationic Waterborne Polyurethane from CO ₂ -Based Polyol. Macromolecules, 2020, 53, 6322-6330.	4.8	30
31	Homogeneous Metallic Oligomer Catalyst with Multisite Intramolecular Cooperativity for the Synthesis of CO ₂ -Based Polymers. ACS Catalysis, 2019, 9, 8669-8676.	11.2	51
32	Polyaniline: an effective suppressor against diffusion and dissolution of polysulfides in Li-S battery. Journal of Solid State Electrochemistry, 2019, 23, 2559-2567.	2.5	11
33	Oxygenâ€Triggered Switchable Polymerization for the Oneâ€Pot Synthesis of CO ₂ â€Based Block Copolymers from Monomer Mixtures. Angewandte Chemie, 2019, 131, 14449-14456.	2.0	9
34	Oxygenâ€Triggered Switchable Polymerization for the Oneâ€Pot Synthesis of CO ₂ â€Based Block Copolymers from Monomer Mixtures. Angewandte Chemie - International Edition, 2019, 58, 14311-14318.	13.8	41
35	A versatile strategy for the synthesis of sequence-defined peptoids with side-chain and backbone diversity <i>via</i> amino acid building blocks. Chemical Science, 2019, 10, 1531-1538.	7.4	60
36	Synthesis of Y-Shaped OEGylated Poly(amino acid)s: The Impact of OEG Architecture. Biomacromolecules, 2019, 20, 1655-1666.	5.4	18

#	Article	IF	CITATIONS
37	Synergetic Organocatalysis for Eliminating Epimerization in Ring-Opening Polymerizations Enables Synthesis of Stereoregular Isotactic Polyester. Journal of the American Chemical Society, 2019, 141, 281-289.	13.7	120
38	A Multifunctional Polypeptide via Ugi Reaction for Compact and Biocompatible Quantum Dots with Efficient Bioconjugation. Bioconjugate Chemistry, 2018, 29, 1335-1343.	3.6	15
39	A Oneâ€Step Route to CO ₂ â€Based Block Copolymers by Simultaneous ROCOP of CO ₂ /Epoxides and RAFT Polymerization of Vinyl Monomers. Angewandte Chemie, 2018, 130, 3655-3659.	2.0	13
40	Synthesis and Properties of Alternating Polypeptoids and Polyampholytes as Protein-Resistant Polymers. Biomacromolecules, 2018, 19, 936-942.	5.4	40
41	A Oneâ€Step Route to CO ₂ â€Based Block Copolymers by Simultaneous ROCOP of CO ₂ /Epoxides and RAFT Polymerization of Vinyl Monomers. Angewandte Chemie - International Edition, 2018, 57, 3593-3597.	13.8	77
42	Breaking the Paradox between Catalytic Activity and Stereoselectivity: <i>rac</i> -Lactide Polymerization by Trinuclear Salen–Al Complexes. Macromolecules, 2018, 51, 906-913.	4.8	71
43	Temperatureâ€responsive Catalyst for the Coupling Reaction of Carbon Dioxide and Propylene Oxide. Chinese Journal of Chemistry, 2018, 36, 299-305.	4.9	14
44	Inside Cover: Temperature-responsive Catalyst for the Coupling Reaction of Carbon Dioxide and Propylene Oxide (Chin. J. Chem. 4/2018). Chinese Journal of Chemistry, 2018, 36, 266-266.	4.9	1
45	Functional Polyamides: A Sustainable Access via Lysine Cyclization and Organocatalytic Ring-Opening Polymerization. Macromolecules, 2018, 51, 8248-8257.	4.8	26
46	In situ molecular level visualization of RAFT polymerization by AlEgen-labelled agents. Science China Chemistry, 2018, 61, 1197-1198.	8.2	1
47	Propylene oxide end-capping route to primary hydroxyl group dominated CO2-polyol. Polymer, 2018, 153, 167-172.	3.8	9
48	Synthesis and properties of carbon dioxide based copolymers. Scientia Sinica Chimica, 2018, 48, 883-893.	0.4	4
49	Multidentate Comb-Shaped Polypeptides Bearing Trithiocarbonate Functionality: Synthesis and Application for Water-Soluble Quantum Dots. Biomacromolecules, 2017, 18, 924-930.	5.4	13
50	A whole-procedure solvent-free route to CO ₂ -based waterborne polyurethane by an elevated-temperature dispersing strategy. Green Chemistry, 2017, 19, 2194-2200.	9.0	49
51	Construction of Well-Defined Redox-Responsive CO ₂ -Based Polycarbonates: Combination of Immortal Copolymerization and Prereaction Approach. Macromolecular Rapid Communications, 2017, 38, 1600754.	3.9	21
52	Preparation and Thermal Properties of Polycarbonates/esters Catalyzed by Using Dinuclear Salphâ€Al from Ringâ€Opening Polymerization of Epoxide Monomers. Chemistry - an Asian Journal, 2017, 12, 3135-3140.	3.3	14
53	CO ₂ -Tuned Sequential Synthesis of Stereoblock Copolymers Comprising a Stereoregularity-Adjustable Polyester Block and an Atactic CO ₂ -Based Polycarbonate Block. Macromolecules, 2017, 50, 9207-9215.	4.8	28
54	Facile Organocatalyzed Synthesis of Poly(ε-lysine) under Mild Conditions. Macromolecules, 2017, 50, 9128-9134.	4.8	25

#	Article	IF	CITATIONS
55	Air-Stable Salen–Iron Complexes: Stereoselective Catalysts for Lactide and ε-Caprolactone Polymerization through <i>in Situ</i> Initiation. Macromolecules, 2017, 50, 9188-9195.	4.8	64
56	CO ₂ -based amphiphilic polycarbonate micelles enable a reliable and efficient platform for tumor imaging. Theranostics, 2017, 7, 4689-4698.	10.0	23
57	Triple hydrogenâ€bonding block copolymers via RAFT polymerization: Synthesis, vesicle formation, and moleculeâ€recognition behavior. Journal of Polymer Science Part A, 2016, 54, 1633-1638.	2.3	3
58	Controlled metalâ€free polymerization toward wellâ€defined thermoresponsive polypeptides by polymerization at low temperature. Journal of Polymer Science Part A, 2016, 54, 2618-2624.	2.3	12
59	Crystalline Regio-/Stereoregular Glycine-Bearing Polymers from ROMP: Effect of Microstructures on Materials Performances. Macromolecules, 2016, 49, 9415-9424.	4.8	18
60	UV-curable waterborne polyurethane from CO2-polyol with high hydrolysis resistance. Polymer, 2016, 100, 219-226.	3.8	43
61	Ugi Reaction of Natural Amino Acids: A General Route toward Facile Synthesis of Polypeptoids for Bioapplications. ACS Macro Letters, 2016, 5, 1049-1054.	4.8	69
62	Controlled synthesis of CO2-diol from renewable starter by reducing acid value through preactivation approach. Science China Chemistry, 2016, 59, 1369-1375.	8.2	12
63	Amino-functionalized poly(N-vinylcaprolactam) derived from lysine: a sustainable polymer with thermo and pH dual stimuli response. Polymer Chemistry, 2016, 7, 7101-7107.	3.9	8
64	One-pot synthesis and postpolymerization functionalization of cyclic carbonate/epoxide-difunctional polycarbonates prepared by regioselective diepoxide/CO ₂ copolymerization. Polymer Chemistry, 2016, 7, 4453-4457.	3.9	14
65	Cheap and fast: oxalic acid initiated CO ₂ -based polyols synthesized by a novel preactivation approach. Polymer Chemistry, 2016, 7, 146-152.	3.9	27
66	Waterborne polyurethanes from CO ₂ based polyols with comprehensive hydrolysis/oxidation resistance. Green Chemistry, 2016, 18, 524-530.	9.0	81
67	Triple hydrogen-bonding containing materials: RAFT polymerization in the presence of 1-octylthymine and self-assembly behavior. Science China Materials, 2015, 58, 709-714.	6.3	1
68	A novel metalloporphyrin-based conjugated microporous polymer for capture and conversion of CO ₂ . RSC Advances, 2015, 5, 31664-31669.	3.6	53
69	Facile preparation of an ultrathin sulfur-wrapped polyaniline nanofiber composite with a core–shell structure as a high performance cathode material for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 7215-7218.	10.3	31
70	New chemosynthetic route to linear Î μ -poly-lysine. Chemical Science, 2015, 6, 6385-6391.	7.4	49
71	Transition of interface oxide layer from porous Mg(OH)2 to dense MgO induced by polyaniline and corrosion resistance of Mg alloy therefrom. Applied Surface Science, 2015, 328, 247-254.	6.1	51
72	Recent advances in carbon dioxide based copolymers. Journal of CO2 Utilization, 2015, 11, 3-9.	6.8	111

#	Article	IF	CITATIONS
73	An aluminum porphyrin complex with high activity and selectivity for cyclic carbonate synthesis. Green Chemistry, 2015, 17, 2853-2858.	9.0	145
74	Efficient synthesis and stabilization of poly(propylene carbonate) from delicately designed bifunctional aluminum porphyrin complexes. Polymer Chemistry, 2015, 6, 4719-4724.	3.9	35
75	One-pot atom-efficient synthesis of bio-renewable polyesters and cyclic carbonates through tandem catalysis. Chemical Communications, 2015, 51, 8504-8507.	4.1	26
76	Toughening of amorphous poly(propylene carbonate) by rubbery CO ₂ -based polyurethane: transition from brittle to ductile. RSC Advances, 2015, 5, 49979-49986.	3.6	10
77	One-step synthesis of an urchin-like sulfur/polyaniline nano-composite as a promising cathode material for high-capacity rechargeable lithium–sulfur batteries. RSC Advances, 2015, 5, 92918-92922.	3.6	13
78	Growth Behavior of Initial Product Layer Formed on Mg Alloy Surface Induced by Polyaniline. Journal of the Electrochemical Society, 2015, 162, C294-C301.	2.9	20
79	Controllable synthesis of a narrow polydispersity CO ₂ -based oligo(carbonate-ether) tetraol. Polymer Chemistry, 2015, 6, 7580-7585.	3.9	44
80	Trivalent Titanium Salen Complex: Thermally Robust and Highly Active Catalyst for Copolymerization of CO ₂ and Cyclohexene Oxide. ACS Catalysis, 2015, 5, 393-396.	11.2	59
81	Quantitative synthesis of bis(cyclic carbonate)s by iron catalyst for non-isocyanate polyurethane synthesis. Green Chemistry, 2015, 17, 373-379.	9.0	71
82	A new strategy to synthesize bottlebrushes with a helical polyglutamate backbone via N-carboxyanhydride polymerization and RAFT. Chemical Communications, 2014, 50, 14183-14186.	4.1	22
83	Highly stereoselective bimetallic complexes for lactide and ε-caprolactone polymerization. RSC Advances, 2014, 4, 57210-57217.	3.6	14
84	Living and stereoselective polymerization of <i>rac</i> â€lactide by bimetallic aluminum Schiffâ€Base complexes. Journal of Polymer Science Part A, 2014, 52, 1344-1352.	2.3	18
85	Bifunctional aluminum porphyrin complex: Soil tolerant catalyst for copolymerization of ₂ and propylene oxide. Journal of Polymer Science Part A, 2014, 52, 2346-2355.	2.3	48
86	New bio-renewable polyester with rich side amino groups from <scp>l</scp> -lysine via controlled ring-opening polymerization. Polymer Chemistry, 2014, 5, 6495-6502.	3.9	46
87	Bimetallic Schiff-base aluminum complexes based on pentaerythrityl tetramine and their stereoselective polymerization of racemic lactide. RSC Advances, 2014, 4, 22561.	3.6	31
88	One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent. Polymer Chemistry, 2014, 5, 6171-6179.	3.9	55
89	Synthesis and characterization of half-salen complexes and their application in the polymerization of lactide and Îμ-caprolactone. Polymer Chemistry, 2014, 5, 6857-6864.	3.9	27
90	Coupling reaction between CO2 and cyclohexene oxide: selective control from cyclic carbonate to polycarbonate by ligand design of salen/salalen titanium complexes. Catalysis Science and Technology, 2014, 4, 3964-3972.	4.1	60

#	Article	IF	CITATIONS
91	Construction of PANI–cellulose composite fibers with good antistatic properties. Journal of Materials Chemistry A, 2014, 2, 7669-7673.	10.3	39
92	Aluminum porphyrin complexes via delicate ligand design: emerging efficient catalysts for high molecular weight poly(propylene carbonate). RSC Advances, 2014, 4, 54043-54050.	3.6	36
93	Electromechanical polyaniline–cellulose hydrogels with high compressive strength. Soft Matter, 2013, 9, 10129.	2.7	51
94	Sandwich nanocomposites of polyaniline embedded between graphene layers and multi-walled carbon nanotubes for cycle-stable electrode materials of organic supercapacitors. RSC Advances, 2013, 3, 1797-1807.	3.6	21
95	Biodegradable poly(carbonateâ€ether)s with thermoresponsive feature at body temperature. Journal of Polymer Science Part A, 2013, 51, 282-289.	2.3	40
96	New bifunctional catalyst based on cobalt–porphyrin complex for the copolymerization of propylene oxide and CO ₂ . Journal of Polymer Science Part A, 2013, 51, 493-498.	2.3	24
97	Water Dispersed Conducting Polyaniline Nanofibers for High-Capacity Rechargeable Lithium–Oxygen Battery. ACS Macro Letters, 2013, 2, 92-95.	4.8	49
98	Biodegradable CO ₂ â€based polycarbonates with rapid and reversible thermal response at body temperature. Journal of Polymer Science Part A, 2013, 51, 1893-1898.	2.3	25
99	Hydrophilic CO ₂ â€based biodegradable polycarbonates: Synthesis and rapid thermoâ€responsive behavior. Journal of Polymer Science Part A, 2013, 51, 2834-2840.	2.3	39
100	Oneâ€Pot Terpolymerization of CO ₂ , Propylene Oxide and Lactide Using Rareâ€earth Ternary Catalyst. Chinese Journal of Chemistry, 2012, 30, 2121-2125.	4.9	30
101	Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of lowâ€molecular weight oligo(carbonateâ€ether) diols with tunable carbonate unit content. Journal of Polymer Science Part A, 2012, 50, 5177-5184.	2.3	71
102	Facile synthesis of poly(ether carbonate)s via copolymerization of CO ₂ and propylene oxide under combinatorial catalyst of rare earth ternary complex and double metal cyanide complex. Journal of Polymer Science Part A, 2012, 50, 362-370.	2.3	39
103	Synthesis and properties of regio-regular poly(2-furyloxirane) using tri-isobutyl aluminium as catalyst. Journal of Polymer Research, 2012, 19, 1.	2.4	0
104	Ether linkage in poly(1,2-propylene carbonate), a key structure factor to tune its performances. Journal of Polymer Research, 2012, 19, 1.	2.4	13
105	Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex. Journal of Polymer Research, 2012, 19, 1.	2.4	47
106	Study on the influence of metal residue on thermal degradation of poly(cyclohexene carbonate). Journal of Polymer Research, 2011, 18, 1177-1183.	2.4	20
107	Synthesis of poly(2â€furyloxirane) with high molecular weight and improved regioregularity using macrocyclic ether as a cocatalyst to potassium <i>tert</i> â€butoxide. Journal of Polymer Science Part A, 2011, 49, 1434-1442.	2.3	2
108	Copolymerization of carbon dioxide and propylene oxide under inorganic oxide supported rare earth ternary catalyst. Journal of Polymer Science Part A, 2011, 49, 3797-3804.	2.3	22

#	Article	IF	CITATIONS
109	Thermal and pH responsive high molecular weight poly(urethaneâ€amine) with high urethane content. Journal of Polymer Science Part A, 2011, 49, 5162-5168.	2.3	28
110	Toughening of poly(propylene carbonate) by hyperbranched poly(esterâ€amide) via hydrogen bonding interaction. Polymer International, 2011, 60, 1697-1704.	3.1	38
111	From amorphous to crystalline: Practical way to improve electrical conductivity of water-borne conducting polyaniline. Polymer, 2011, 52, 3059-3064.	3.8	26
112	COPOLYMERIZATION OF CYCLOHEXENE OXIDE AND CARBON DIOXIDE CATALYZED BY ALUMINUM PORPHYRIN. Acta Polymerica Sinica, 2011, 011, 784-790.	0.0	3
113	DIELS-ALDER REACTION OF FURFURYL GLYCIDYL ETHER/CARBON DIOXIDE COPOLYMER. Acta Polymerica Sinica, 2011, 011, 1336-1340.	0.0	3
114	Carbon dioxideâ€based copolymers: Environmental benefits of PPC, an industrially viable catalyst. Biotechnology Journal, 2010, 5, 1164-1180.	3.5	158
115	Alternating copolymerization of carbon dioxide and propylene oxide under bifunctional cobalt salen complexes: Role of Lewis base substituent covalent bonded on salen ligand. Journal of Polymer Science Part A, 2010, 48, 359-365.	2.3	53
116	Synthesis and Stabilization of Novel Aliphatic Polycarbonate from Renewable Resource. Macromolecules, 2009, 42, 9251-9254.	4.8	45
117	The copolymerization of carbon dioxide and propylene oxide with Y(CCl3COO)3-diphenylzinc-glycerol catalyst. Polymer Bulletin, 2008, 61, 679-688.	3.3	5
118	Regioâ€regular structure high molecular weight poly(propylene carbonate) by rare earth ternary catalyst and Lewis base cocatalyst. Journal of Polymer Science Part A, 2008, 46, 4451-4458.	2.3	26
119	Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regioâ€specific poly(propylene carbonate) with high molecular weight. Journal of Polymer Science Part A, 2008, 46, 5959-5967.	2.3	79
120	Enolic Schiff Base Aluminum Complexes and Their Catalytic Stereoselective Polymerization of Racemic Lactide. Chemistry - A European Journal, 2008, 14, 3126-3136.	3.3	121
121	Polymerization ofrac-Lactide Using Schiff Base Aluminum Catalysts:Â Structure, Activity, and Stereoselectivity. Macromolecules, 2007, 40, 1904-1913.	4.8	174
122	Stable Aqueous Dispersion of Conducting Polyaniline with High Electrical Conductivity. Macromolecules, 2007, 40, 8132-8135.	4.8	27
123	Water-resistant conducting hybrids from electrostatic interactions. Journal of Polymer Science Part A, 2007, 45, 1424-1431.	2.3	6
124	Five-coordinated active species in the stereoselective polymerization ofrac-lactide usingN,N′-(2,2-dimethyl-1,3-propylene) bis(3,5-di-tert-butyl-salicylideneimine) aluminum complexes. Journal of Polymer Science Part A, 2006, 44, 4932-4938.	2.3	19
125	Crosslinkable poly(propylene carbonate): High-yield synthesis and performance improvement. Journal of Polymer Science Part A, 2006, 44, 5329-5336.	2.3	59
126	Thermotropic liquid crystallinity, thermal decomposition behavior, and aggregated structure of poly(propylene carbonate)/ethyl cellulose blends. Journal of Applied Polymer Science, 2006, 100, 584-592.	2.6	31

#	Article	IF	CITATIONS
127	Synthesis of Monodisperse Oligo[(1,4â€Phenyleneethynylene)â€Altâ€(2,5â€Thiopheneethynylene)]s. Synthetic Communications, 2005, 35, 115-119.	2.1	9
128	Crystallization and Melting Behaviors of PPC-BS/PVA Blends. Macromolecular Chemistry and Physics, 2003, 204, 1557-1566.	2.2	34
129	Thermal degradation kinetics of poly(propylene carbonate) obtained from the copolymerization of carbon dioxide and propylene oxide. Journal of Applied Polymer Science, 2003, 90, 947-953.	2.6	38
130	Synthesis and properties of carbon dioxide – epoxides copolymers from rare earth metal catalyst. Macromolecular Symposia, 2003, 195, 281-286.	0.7	44
131	Solvent-Free Polyaniline Coating for Corrosion Prevention of Metal. ACS Symposium Series, 2003, , 254-267.	0.5	10
132	Characterization and properties of the neutral and doped blends of poly(3-dodecylthiophene) with low-density polyethylene. Journal of Applied Polymer Science, 2002, 84, 741-749.	2.6	0
133	Morphological study on water-borne conducting polyaniline-poly(ethylene oxide) blends. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 605-612.	2.1	11
134	Miscibility and hydrogen-bonding interactions in blends of carbon dioxide/epoxy propane copolymer with poly(p-vinylphenol). Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1957-1964.	2.1	33
135	Morphology and thermal properties of conductive polyaniline/polyamide composite films. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2531-2538.	2.1	13
136	Copolymerization of carbon dioxide and propylene oxide with Ln(CCl3COO)3-based catalyst: The role of rare-earth compound in the catalytic system. Journal of Polymer Science Part A, 2001, 39, 2751-2754.	2.3	55
137	A One-Pot Procedure to Prepare S-Protected 4-Iodothiophenols. Synthetic Communications, 2000, 30, 4293-4298.	2.1	11
138	Catalytic oxidization polymerization of aniline in an H2O2?Fe2+ system. Journal of Applied Polymer Science, 1999, 72, 1077-1084.	2.6	63
139	The Electrochemical Reversibility of the Polyaniline/Organodisulfide Composite Cathode Containing an Organomonothiol. Journal of the Electrochemical Society, 1999, 146, 3230-3233.	2.9	7
140	Soluble 2,5â€Dimercaptoâ€1,3,4â€ŧhiadiazole/Poly(oâ€ŧoluidine) Electroactive Composite. Journal of the Electrochemical Society, 1999, 146, 1712-1716.	2.9	15
141	From Impossible to Possible: Atom Economic Polymerization of Low Strain Fiveâ€Membered Carbonates. Angewandte Chemie, 0, , .	2.0	0
142	Switchable Polymerization Organocatalysis: From Monomer Mixtures to Block Copolymers. Angewandte Chemie, 0, , .	2.0	5