
Ting-Feng Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4420531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances of Li ₄ Ti ₅ O ₁₂ as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 5750-5777.	5.2	464
2	Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids, 2010, 71, 1236-1242.	1.9	323
3	Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. Journal of Power Sources, 2016, 316, 85-105.	4.0	311
4	Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Science Bulletin, 2020, 65, 546-556.	4.3	292
5	Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry, 2019, 31, 54-78.	7.1	275
6	Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. Journal of Molecular Liquids, 2011, 163, 99-121.	2.3	258
7	Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery. Journal of Power Sources, 2013, 222, 448-454.	4.0	199
8	Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 131, 100-105.	1.7	197
9	High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries. Journal of Power Sources, 2012, 214, 220-226.	4.0	179
10	A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy, 2021, 85, 105955.	8.2	171
11	High-performance Li4Ti5â^'xVxO12 (0≤â‰9.3) as an anode material for secondary lithium-ion battery. Electrochimica Acta, 2009, 54, 7464-7470.	2.6	160
12	A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics, 2009, 15, 779-784.	1.2	154
13	Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution. Journal of Power Sources, 2012, 215, 258-265.	4.0	153
14	NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today, 2020, 33, 100894.	6.2	152
15	Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Materials, 2020, 26, 165-197.	9.5	145
16	Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Composites Part B: Engineering, 2019, 167, 566-572.	5.9	140
17	PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochimica Acta, 2006, 52, 443-449.	2.6	138
18	High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. Journal of Power Sources, 2012, 211, 59-65.	4.0	132

#	Article	IF	CITATIONS
19	Approaching Highâ€Performance Lithium Storage Materials by Constructing Hierarchical CoNiO ₂ @CeO ₂ Nanosheets. Energy and Environmental Materials, 2021, 4, 586-595.	7.3	128
20	Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. Journal of Power Sources, 2018, 399, 26-41.	4.0	125
21	Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Current Opinion in Solid State and Materials Science, 2018, 22, 109-126.	5.6	125
22	Nitrogen-Doped Hierarchical Porous Carbon from Wheat Straw for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 11595-11605.	3.2	123
23	Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. Journal of Energy Chemistry, 2022, 71, 400-410.	7.1	122
24	Advanced electrochemical properties of Mo-doped Li4Ti5O12 anode material for power lithium ion battery. RSC Advances, 2012, 2, 3541.	1.7	119
25	Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to OV. Journal of Power Sources, 2010, 195, 285-288.	4.0	113
26	Sub-micrometric Li4â^'xNaxTi5O12 (0Ââ‰ÂxÂâ‰Â0.2) spinel as anode material exhibiting high rate capability. Journal of Power Sources, 2014, 246, 505-511.	4.0	106
27	Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism. Journal of Alloys and Compounds, 2020, 817, 153246.	2.8	103
28	Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries. Journal of Power Sources, 2020, 461, 228151.	4.0	99
29	Rapid Charge–Discharge Property of Li ₄ Ti ₅ O ₁₂ –TiO ₂ Nanosheet and Nanotube Composites as Anode Material for Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 20205-20213.	4.0	95
30	Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5ÂV lithium-ion batteries. Ionics, 2011, 17, 383-389.	1.2	94
31	Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries. Applied Surface Science, 2019, 495, 143590.	3.1	94
32	Structure and Electrochemical Performance of Niobium-Substituted Spinel Lithium Titanium Oxide Synthesized by Solid-State Method. Journal of the Electrochemical Society, 2011, 158, A266.	1.3	92
33	Improved Cycling Stability and Fast Charge–Discharge Performance of Cobalt-Free Lithium-Rich Oxides by Magnesium-Doping. ACS Applied Materials & Interfaces, 2016, 8, 32349-32359.	4.0	86
34	Enhanced rate performance of molybdenum-doped spinel LiNi 0.5 Mn 1.5 O 4 cathode materials for lithium ion battery. Journal of Power Sources, 2014, 247, 778-785.	4.0	84
35	High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Composites Part B: Engineering, 2019, 164, 576-582.	5.9	84
36	Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy, 2020, 67, 104295.	8.2	83

#	Article	IF	CITATIONS
37	Towards high-performance cathodes: Design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries. Coordination Chemistry Reviews, 2021, 446, 214124.	9.5	83
38	Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage. Electrochimica Acta, 2019, 307, 293-301.	2.6	79
39	Synthesis and physicochemical properties of LiAl0.05Mn1.95O4 cathode material by the ultrasonic-assisted sol–gel method. Journal of Power Sources, 2006, 162, 636-643.	4.0	76
40	Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries. Journal of Hazardous Materials, 2019, 368, 714-721.	6.5	73
41	Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics, 2012, 18, 529-539.	1.2	67
42	Understanding the Thermal and Mechanical Stabilities of Olivine-Type LiMPO ₄ (M = Fe, Mn) as Cathode Materials for Rechargeable Lithium Batteries from First Principles. ACS Applied Materials & Interfaces, 2014, 6, 4033-4042.	4.0	66
43	Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material. Journal of Alloys and Compounds, 2013, 547, 107-112.	2.8	65
44	A literature review and test: Structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures for lithium ion battery. Synthetic Metals, 2009, 159, 1255-1260.	2.1	62
45	Free-standing honeycomb-like N doped carbon foam derived from coal tar pitch for high-performance supercapacitor. Applied Surface Science, 2020, 506, 145014.	3.1	61
46	Preparation and characterization of sub-micro LiNi0.5â^'xMn1.5+xO4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method. Journal of Power Sources, 2007, 167, 185-191.	4.0	60
47	Rapid Lithiation and Delithiation Property of V-Doped Li ₂ ZnTi ₃ O ₈ as Anode Material for Lithium-Ion Battery. ACS Sustainable Chemistry and Engineering, 2015, 3, 3062-3069.	3.2	59
48	Synthesis and application of a novel Li4Ti5O12 composite as anode material with enhanced fast charge-discharge performance for lithium-ion battery. Electrochimica Acta, 2014, 134, 377-383.	2.6	57
49	Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Science Bulletin, 2017, 62, 1004-1010.	4.3	56
50	Li ₅ Cr ₇ Ti ₆ O ₂₅ as a novel negative electrode material for lithium-ion batteries. Chemical Communications, 2015, 51, 14050-14053.	2.2	54
51	Towards high-performance anodes: Design and construction of cobalt-based sulfide materials for sodium-ion batteries. Journal of Energy Chemistry, 2021, 54, 680-698.	7.1	54
52	Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability. Journal of Electroanalytical Chemistry, 2019, 832, 196-203.	1.9	53
53	Synthesis and electrochemistry of 5V LiNi0.4Mn1.6O4 cathode materials synthesized by different methods. Electrochimica Acta, 2008, 53, 3120-3126.	2.6	52
54	High-Surface-Area and Porous Co ₂ P Nanosheets as Cost-Effective Cathode Catalysts for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 21281-21290.	4.0	52

#	Article	IF	CITATIONS
55	Hybrid porous flower-like NiO@CeO2microspheres with improved pseudocapacitiveproperties. Electrochimica Acta, 2019, 297, 593-605.	2.6	51
56	Construction of spherical NiO@MnO2 with core-shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor. Ceramics International, 2020, 46, 421-429.	2.3	50
57	Towards high-performance electrocatalysts and photocatalysts: Design and construction of MXenes-based nanocomposites for water splitting. Chemical Engineering Journal, 2021, 421, 129944.	6.6	50
58	Design and comparison of ex situ and in situ devices for Raman characterization of lithium titanate anode material. Ionics, 2011, 17, 503-509.	1.2	49
59	Toward superior lithium/sodium storage performance: design and construction of novel TiO2-based anode materials. Rare Metals, 2021, 40, 3049-3075.	3.6	49
60	Co3O4@NiCo2O4 microsphere as electrode materials for high-performance supercapacitors. Solid State Ionics, 2019, 336, 110-119.	1.3	48
61	Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery. Journal of Alloys and Compounds, 2017, 703, 103-113.	2.8	47
62	Hierarchical mesoporous flower-like ZnCo2O4@NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochimica Acta, 2018, 284, 128-141.	2.6	47
63	Increased cycling stability of Li4Ti5O12-coated LiMn1.5Ni0.5O4 as cathode material for lithium-ion batteries. Ceramics International, 2013, 39, 3087-3094.	2.3	46
64	Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08â^'x Al x O2 (0â‰ ¤ â‰ 0 .08) as cathode materials. Science China Materials, 2016, 59, 618-628.	3.5	46
65	Comparison of structure and electrochemical properties for 5ÂV LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. Journal of Solid State Electrochemistry, 2009, 13, 913-919.	1.2	45
66	Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode. Ionics, 2016, 22, 1759-1774.	1.2	44
67	Li ₄ Ti ₅ O ₁₂ –LiAlO ₂ Composite as High Performance Anode Material for Lithium-Ion Battery. ACS Sustainable Chemistry and Engineering, 2016, 4, 1994-2003.	3.2	44
68	Enhanced rate performance of Li4Ti5O12 anode material by ethanol-assisted hydrothermal synthesis for lithium-ion battery. Ceramics International, 2014, 40, 9853-9858.	2.3	43
69	Facile synthesis of MoO2/CNTs composites for high-performance supercapacitor electrodes. Ceramics International, 2016, 42, 9250-9256.	2.3	43
70	Carbon-coated LiMn1-Fe PO4 (0â‰ ¤ â‰ 0 .5) nanocomposites as high-performance cathode materials for Li-ion battery. Composites Part B: Engineering, 2019, 175, 107067.	5.9	43
71	ZnS nanoparticles as the electrode materials for high-performance supercapacitors. Solid State Ionics, 2019, 343, 115074.	1.3	43
72	Kinetic study on LiFePO4-positive electrode material of lithium-ion battery. Ionics, 2011, 17, 437-441.	1.2	42

Ting-Feng Yi

#	Article	IF	CITATIONS
73	Li1.2Mn0.54Ni0.13Co0.13O2 hollow hierarchical microspheres with enhanced electrochemical performances as cathode material for lithium-ion battery application. Electrochimica Acta, 2017, 237, 217-226.	2.6	41
74	Approaching high-performance electrode materials of ZnCo2S4 nanoparticle wrapped carbon nanotubes for supercapacitors. Journal of Materiomics, 2021, 7, 563-576.	2.8	41
75	Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Metals, 2021, 40, 2464-2473.	3.6	41
76	Spinel Li4Ti5â^'xZrxO12 (0⩼x⩼20.25) materials as high-performance anode materials for lithium-ion batter Journal of Alloys and Compounds, 2013, 558, 11-17.	ies. 2.8	40
77	Comparison of electronic property and structural stability of LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials for lithium-ion batteries. Computational Materials Science, 2010, 50, 776-779.	1.4	39
78	Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material. Ceramics International, 2013, 39, 4673-4678.	2.3	39
79	Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery. Electrochimica Acta, 2014, 147, 250-256.	2.6	38
80	Enhanced fast charge–discharge performance of Li ₄ Ti ₅ O ₁₂ as anode materials for lithium-ion batteries by Ce and CeO ₂ modification using a facile method. RSC Advances, 2015, 5, 37367-37376.	1.7	37
81	High-performance x Li 2 MnO 3 ·(1- x)LiMn 1/3 Co 1/3 Ni 1/3 O 2 (0.1 â;¤ â; 9 .5) as Cathode Material for Lithium-ion Battery. Electrochimica Acta, 2016, 188, 686-695.	2.6	37
82	Density functional theory study of lithium intercalation for 5ÂV LiNi0.5Mn1.5O4 cathode materials. Solid State Ionics, 2008, 179, 2132-2136.	1.3	36
83	Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries. Solid State Ionics, 2015, 276, 84-89.	1.3	36
84	Ultrasound-assisted two-step water-bath synthesis of g-C ₃ N ₄ /BiOBr composites: visible light-driven photocatalysis, sterilization, and reaction mechanism. New Journal of Chemistry, 2019, 43, 8711-8721.	1.4	35
85	Mg-doped Li1.2Mn0.54Ni0.13Co0.13O2 nano flakes with improved electrochemical performance for lithium-ion battery application. Journal of Alloys and Compounds, 2018, 739, 607-615.	2.8	34
86	Mesoporous NiCo2O4 nanoneedles@MnO2 nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors. Journal of Energy Chemistry, 2019, 31, 167-177.	7.1	34
87	Structure and electrochemical performance of Li4Ti5O12-coated LiMn1.4Ni0.4Cr0.2O4 spinel as 5V materials. Electrochemistry Communications, 2009, 11, 91-94.	2.3	33
88	Structure and electrochemical properties of Sc3+-doped Li4Ti5O12 as anode materials for lithium-ion battery. Ceramics International, 2015, 41, 7073-7079.	2.3	33
89	Effect of treated temperature on structure and performance of LiCoO2 coated by Li4Ti5O12. Surface and Coatings Technology, 2011, 205, 3885-3889.	2.2	32
90	Enhanced electrochemical performance of a novel Li4Ti5O12 composite as anode material for lithium-ion battery in a broad voltage window. Ceramics International, 2015, 41, 2336-2341.	2.3	32

#	Article	IF	CITATIONS
91	Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery. Materials Research Bulletin, 2010, 45, 456-459.	2.7	30
92	A Simple and Lowâ€Cost Method to Synthesize Crâ€Doped αâ€Fe ₂ O ₃ Electrode Materials for Lithiumâ€lon Batteries. ChemElectroChem, 2019, 6, 856-864.	1.7	30
93	Sodium-deficient O3–Na0.75Fe0.5-Cu Mn0.5O2 as high-performance cathode materials of sodium-ion batteries. Composites Part B: Engineering, 2022, 238, 109912.	5.9	30
94	Stabilities and electronic properties of lithium titanium oxide anode material for lithium ion battery. Journal of Power Sources, 2012, 198, 318-321.	4.0	29
95	Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum. Journal of Power Sources, 2015, 293, 33-41.	4.0	29
96	Robust Strategy for Crafting Li ₅ Cr ₇ Ti ₆ O ₂₅ @CeO ₂ Composites as High-Performance Anode Material for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 23662-23671.	4.0	29
97	Nanosized zinc oxides-based materials for electrochemical energy storage and conversion: Batteries and supercapacitors. Chinese Chemical Letters, 2022, 33, 714-729.	4.8	29
98	Mannich reaction catalyzed by a novel catalyst under solvent-free conditions. Journal of Industrial and Engineering Chemistry, 2009, 15, 653-656.	2.9	28
99	Enhanced lithium storage capability of sodium lithium titanate via lithium-site doping. Journal of Power Sources, 2015, 297, 283-294.	4.0	28
100	Bimetallic metal-organic framework derived transition metal sulfide microspheres as high-performance lithium/sodium storage materials. Chemical Engineering Journal, 2022, 446, 137154.	6.6	28
101	Improved rate performance of LiNi0.5Mn1.5O4 as cathode of lithium-ion battery by Li0.33La0.56TiO3 coating. Materials Letters, 2019, 239, 56-58.	1.3	27
102	Fe-stabilized Li-rich layered Li1.2Mn0.56Ni0.16Co0.08O2 oxide as a high performance cathode for advanced lithium-ion batteries. Materials Today Energy, 2017, 4, 25-33.	2.5	26
103	Porous ZnTiO3 rods as a novel lithium storage material for Li-ion batteries. Ceramics International, 2020, 46, 14030-14037.	2.3	26
104	Advanced electrochemical performance of LiMn1.4Cr0.2Ni0.4O4 as 5V cathode material by citric-acid-assisted method. Journal of Physics and Chemistry of Solids, 2009, 70, 153-158.	1.9	24
105	Morphology control and its effect on the electrochemical performance of Na2Li2Ti6O14 anode materials for lithium ion battery application. Electrochimica Acta, 2018, 259, 855-864.	2.6	24
106	Interconnected Co3O4@CoNiO2@PPy nanorod and nanosheet composite grown on nickel foam as binder-free electrodes for Li-ion batteries. Solid State Ionics, 2019, 329, 131-139.	1.3	24
107	Advancement of technology towards high-performance non-aqueous aluminum-ion batteries. Journal of Energy Chemistry, 2021, 57, 169-188.	7.1	24
108	Effect of Sodium-Site Doping on Enhancing the Lithium Storage Performance of Sodium Lithium Titanate. ACS Applied Materials & Interfaces, 2016, 8, 10302-10314.	4.0	23

#	Article	IF	CITATIONS
109	Li4Ti5O12-rutile TiO2 nanosheet composite as a high performance anode material for lithium-ion battery. International Journal of Hydrogen Energy, 2015, 40, 8571-8578.	3.8	22
110	Structural stabilities, surface morphologies and electronic properties of spinel LiTi2O4 as anode materials for lithium-ion battery: A first-principles investigation. Journal of Power Sources, 2016, 319, 185-194.	4.0	22
111	Construction of alternating layered quasi-three-dimensional electrode Ag NWs/CoO for water splitting: A discussion of catalytic mechanism. Electrochimica Acta, 2019, 317, 468-477.	2.6	22
112	Comprehensive insights and perspectives into the recent progress of electrode materials for non-aqueous K-ion battery. Journal of Materiomics, 2020, 6, 431-454.	2.8	22
113	Structure and physical properties of Li4Ti5O12 synthesized at deoxidization atmosphere. Ionics, 2011, 17, 799-803.	1.2	21
114	Synthesis and properties of Fe–B powders by molten salt method. Journal of Materials Research, 2017, 32, 883-889.	1.2	21
115	Preparation and performance of lead foam grid for negative electrode of VRLA battery. Materials Chemistry and Physics, 2006, 99, 431-436.	2.0	20
116	Review and prospect of Li2ZnTi3O8-based anode materials for Li-ion battery. Ionics, 2019, 25, 373-397.	1.2	20
117	Improving the cycling stability and rate capability of LiMn0.5Fe0.5PO4/C nanorod as cathode materials by LiAlO2 modification. Journal of Materiomics, 2020, 6, 33-44.	2.8	20
118	NiCo alloy nanoparticles encapsulated in N-doped 3D porous carbon as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 22797-22807.	3.8	20
119	Improved electrochemical properties of Li4Ti5O12–Li0.33La0.56TiO3 composite anodes prepared by a solid-state synthesis. Journal of Alloys and Compounds, 2015, 646, 612-619.	2.8	19
120	Improved electrochemical performance of Ag-modified Li4Ti5O12 anode material in a broad voltage window. Journal of Chemical Sciences, 2014, 126, 17-23.	0.7	18
121	Facile synthesis of tremelliform Co3O4@CeO2 hybrid electrodes grown on Ni foam as high-performance electrodes for supercapacitors. Materials Letters, 2018, 233, 220-223.	1.3	18
122	Li0.95Na0.05MnPO4/C nanoparticles compounded with reduced graphene oxide sheets for superior lithium ion battery cathode performance. Ceramics International, 2019, 45, 4849-4856.	2.3	18
123	Effects of synthetic parameters on structure and electrochemical performance of spinel lithium manganese oxide by citric acid-assisted sol–gel method. Journal of Alloys and Compounds, 2006, 425, 343-347.	2.8	17
124	Effects of different particle sizes on electrochemical performance of spinel LiMn2O4 cathode materials. Journal of Materials Science, 2007, 42, 3825-3830.	1.7	17
125	V2O5 modified LiNi0.5Mn1.5O4 as cathode material for high-performance Li-ion battery. Materials Letters, 2019, 253, 136-139.	1.3	17
126	Li ₅ Cr ₇ Ti ₆ O ₂₅ /Multiwalled Carbon Nanotubes Composites with Fast Charge-Discharge Performance as Negative Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A626-A634.	1.3	17

#	Article	IF	CITATIONS
127	Band structure analysis on olivine LiMPO 4 and delithiated MPO 4 (M = Fe, Mn) cathode materials. Journal of Alloys and Compounds, 2014, 617, 716-721.	2.8	16
128	Observation on the electrochemical reactions of Li3-xNaxV2(PO4)3 (0Ââ‰ÂxÂâ‰Â3) as cathode materials for rechargeable batteries. Journal of Alloys and Compounds, 2017, 690, 31-41.	2.8	16
129	Acetylation of alcohols and phenols with acetic anhydride under solvent-free conditions using an ionic liquid based on morpholine as a recoverable and reusable catalyst. Monatshefte FÃ1⁄4r Chemie, 2010, 141, 975-978.	0.9	15
130	Hollow and hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 micro-cubes as promising cathode materials for lithium ion battery. Journal of Alloys and Compounds, 2019, 807, 151686.	2.8	15
131	Electrochemical intercalation kinetics of lithium ions for spinel LiNi0.5Mn1.5O4 cathode material. Russian Journal of Electrochemistry, 2010, 46, 227-232.	0.3	14
132	Thermodynamic stability and transport properties of tavorite LiFeSO ₄ F as a cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19728-19737.	5.2	14
133	Green synthesis of reduced graphene oxide as high-performance electrode materials for supercapacitors. Ionics, 2020, 26, 415-422.	1.2	14
134	Structure and electrochemical performance of BaLi2â^'x Na x Ti6O14 (0â‰æâ‰⊉) as anode materials for lithium-ion battery. Science China Materials, 2017, 60, 728-738.	3.5	13
135	Facile strategy to fabricate Na2Li2Ti6O14@Li0.33La0.56TiO3 composites as promising anode materials for lithium-ion battery. Ceramics International, 2018, 44, 12273-12281.	2.3	13
136	Epitaxial growth of metastable phase α-Ag2MoO4 on WO3 surface: Visible light-driven photocatalysis, sterilization, and reaction mechanism. Journal of Alloys and Compounds, 2020, 814, 152255.	2.8	13
137	Boosting the lithium storage performance of Na ₂ Li ₂ Ti ₆ O ₁₄ anodes by g-C ₃ N ₄ modification. Dalton Transactions, 2021, 50, 5208-5217.	1.6	13
138	Promoting the Li storage performances of Li2ZnTi3O8@Na2WO4 composite anode for Li-ion battery. Ceramics International, 2021, 47, 19455-19463.	2.3	13
139	Effects of lead-foam grids on performance of VRLA battery. Journal of Power Sources, 2006, 158, 885-890.	4.0	12
140	Facile Synthesis of Sheet Stacking Structure NiCo ₂ S ₄ @PPy with Enhanced Rate Capability and Cycling Performance for Aqueous Supercapacitors. Energy Technology, 2020, 8, 2000096.	1.8	12
141	Li2ZnTi3O8@α-Fe2O3 composite anode material for Li-ion batteries. Ceramics International, 2021, 47, 18732-18742.	2.3	12
142	Study of influence of lead foam as negative electrode current collector material on VRLA battery charge performance. Journal of Alloys and Compounds, 2006, 422, 332-337.	2.8	11
143	Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics, 2019, 25, 4567-4576.	1.2	11
144	In Situ Construction of Multibuffer Structure 3D CoSn@SnO x /CoO x @C Anode Material for Ultralong Life Lithium Storage. Energy Technology, 2020, 8, 1900829.	1.8	11

#	Article	IF	CITATIONS
145	Construction of Carbon-Coated LiMn _{0.5} Fe _{0.5} PO ₄ @Li _{0.33} La _{0.56} TiO ₃ Nanorod Composites for High-Performance Li-lon Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 33102-33111.	b> 4.0	11
146	Effect of Organic Solvent and Resin on Luminescent Capability of SrAl2O4:Eu2+, Dy3+ Phosphor. Journal of Rare Earths, 2006, 24, 160-161.	2.5	10
147	Physicochemical properties of LiAl x Mn2 â^' x O4 and LiAl0.05Mn1.95O4 â^' y F y cathode mate citric acid-assisted sol–gel method. Ionics, 2009, 15, 177-182.	rial by the 1.2	10
148	Structure and electrochemical properties of LiLaxMn2–xO4 cathode material by the ultrasonic-assisted sol-gel method. International Journal of Minerals, Metallurgy and Materials, 2009, 16, 119-123.	2.4	9
149	Effect of lithium extraction on the stabilities, electrochemical properties, and bonding characteristics of LiFePO4 cathode materials: A first-principles investigation. Ceramics International, 2014, 40, 2655-2661.	2.3	9
150	Li 3-x Na x V 2 (PO 4) 3 (0â‰ജâ‰ള): Possible anode materials for rechargeable lithium-ion batteries. Electrochimica Acta, 2016, 200, 1-11.	2.6	9
151	Synthesis of morphology controllable free-standing Co3O4 nanostructures and their catalytic activity for Li O2 cells. Electrochimica Acta, 2019, 307, 232-240.	2.6	9
152	Effect of cation doping on the electrochemical properties of Li2MoO3 as a promising cathode material for lithium-ion battery. Ionics, 2020, 26, 4413-4422.	1.2	9
153	Fabrication and electrochemical properties of CuCrO2 anode obtained by a sol–gel method. Ceramics International, 2015, 41, 6668-6675.	2.3	8
154	Construction of spherical ZnTiO3/MWCNTs composites as anode material for high-performance Li-ion batteries. Sustainable Materials and Technologies, 2020, 25, e00207.	1.7	8
155	Black phosphorus quantum dots supported by a conductive polymer nanofibrous membrane: A self-standing, metal-free electrocatalyst for nitrogen fixation. Composites Communications, 2021, 23, 100551.	3.3	8
156	Powder electrochemical properties with different particle sizes of spinel LiAl0.05Mn1.95O4 synthesized by sol-gel method. Rare Metals, 2007, 26, 330-334.	3.6	7
157	Effect of temperature on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4-positive-electrode material. Ionics, 2014, 20, 309-314.	1.2	7
158	Improving the structural stability and electrochemical performance of Na ₂ Li ₂ Ti ₆ O ₁₄ nanoparticles <i>via</i> MgF ₂ coating. RSC Advances, 2019, 9, 15763-15771.	1.7	7
159	SrLi2Ti6O14@AlF3 composite as high performance anode materials for lithium ion battery application. Electrochimica Acta, 2020, 329, 135139.	2.6	7
160	Construction of Porous ZnS@Co 3 S 4 @NiO Nanosheets Hybrid Materials for Highâ€Performance Pseudocapacitor Electrode by Morphology Reshaping. Advanced Sustainable Systems, 2020, 4, 2000090.	2.7	7
161	Improved lithium storage performance of CeO2-decorated SrLi2Ti6O14 material as an anode for Li-ion battery. Journal of Industrial and Engineering Chemistry, 2021, 101, 144-152.	2.9	7
162	Boosting the Li storage performances of Bi5Nb3O15@CeO2 composite anode for lithium-ion batteries. Surface and Coatings Technology, 2021, 423, 127580.	2.2	7

#	Article	IF	CITATIONS
163	Controllable Synthesis and Electrochemical Research of Zn ₂ TiO ₄ Spheres as New Anode Materials for Lithium Ion Batteries. Advanced Sustainable Systems, 2021, 5, 2100149.	2.7	7
164	Design of Sb2Se3-based nanocomposites for high-performance alkali metal ion batteries driven by a hybrid charge storage mechanism. Chemical Engineering Journal, 2022, 440, 135971.	6.6	7
165	In-situ X-ray diffraction study on the structural reversibility of lithium nickel cobalt oxide in a broad electrochemical window of 1.35–4.3 V. Electrochimica Acta, 2016, 190, 248-257.	2.6	6
166	Improving the stability, lithium diffusion dynamics, and specific capacity of SrLi2Ti6O14 via ZrO2 coating. Green Energy and Environment, 2022, 7, 53-65.	4.7	6
167	Li2MoO3 microspheres with excellent electrochemical performances as cathode material for lithium-ion battery. Ionics, 2020, 26, 4401-4411.	1.2	6
168	Construction of porous NiCo2S4@CeO2 microspheres composites for high-performance pseudocapacitor electrode by morphology reshaping. Materials Today Chemistry, 2021, 20, 100448.	1.7	6
169	Lithium-Ion Insertion Kinetics of Na-Doped LiFePO4 as Cathode Materials for Lithium-Ion Batteries. Metallurgical and Materials Transactions E, 2015, 2, 33-38.	0.5	5
170	Effect of F Dopant on the Structural Stability, Redox Mechanism, and Electrochemical Performance of Li 2 MoO 3 Cathode Materials. Advanced Sustainable Systems, 2020, 4, 2000104.	2.7	5
171	Highly uniform platanus fruit-like CuCo ₂ S ₄ microspheres as an electrode material for high performance lithium-ion batteries and supercapacitors. Dalton Transactions, 2021, 50, 13042-13051.	1.6	5
172	Reaction mechanisms, recent progress and future prospects of tin selenide-based composites for alkali-metal-ion batteries. Composites Part B: Engineering, 2022, 242, 110045.	5.9	5
173	Tartaric acid-assisted sol–gel synthesis of LiNi0.5Co0.5â^'Ti O2 (0 ⩼2x⩽ 0.5) as cathode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2011, 663, 90-97.	1.9	4
174	Physicochemical Properties of Li4Ti4.95Zn0.05O12 Anode Material by a Two-Step Solid-State Method. Journal of Materials Engineering and Performance, 2013, 22, 1744-1747.	1.2	4
175	Al2O3 coating on BaLi2Ti6O14 surface to boost its stability and rate performance. Ceramics International, 2020, 46, 14398-14407.	2.3	4
176	Enhanced lithium storage property of porous Na2Li2Ti6O14@PEDOT spheres as anodes for lithium-ion batteries. Materials Chemistry and Physics, 2022, 278, 125700.	2.0	4
177	Sea urchin-like LiAlO2@NiCoO2 hybrid composites with core-shell structure as high-performance Li storage materials. Ceramics International, 2022, 48, 26196-26205.	2.3	4
178	Understanding the thermal stability and bonding characteristic of Li x Ni0.5Mn1.5O4 as cathode materials for lithium-ion battery from first principles. Ionics, 2017, 23, 559-565.	1.2	3
179	Towards high-performance battery systems by regulating morphology of TiO2 materials. Sustainable Materials and Technologies, 2021, 30, e00355.	1.7	3
180	High-performance Li-ion battery driven by a hybrid Li storage mechanism in a three-dimensional architectured ZnTiO ₃ –CeO ₂ microsphere anode. Dalton Transactions, 2021, 51, 168-178.	1.6	3

#	Article	IF	CITATIONS
181	Effects of Ru doping on the structural stability and electrochemical properties of Li ₂ MoO ₃ cathode materials for Li-ion batteries. Dalton Transactions, 2022, 51, 8786-8794.	1.6	3
182	Synthesis and physicochemical properties of LiLa0.01Mn1.99O3.99F0.01 cathode materials for lithium ion batteries. Rare Metals, 2008, 27, 496-501.	3.6	2
183	Effects of Al, F dual substitutions on the structure and electrochemical properties of lithium manganese oxide. International Journal of Minerals, Metallurgy, and Materials, 2008, 15, 182-186.	0.2	1
184	Structure Stability of LiFeSO ₄ F Cathode Material as Lithium-Ion Battery. ECS Transactions, 2014, 59, 73-77.	0.3	1
185	Solvothermal Synthesis and Characterization of Ultralong Bi ₂ S ₃ Nanowires. Journal of Advanced Microscopy Research, 2014, 9, 58-61.	0.3	1
186	PREPARATION AND ELECTROCHEMICAL PROPERTIES OF ELECTROSPUN POLY(VINYLIDENE FLUORIDE) MEMBRANES. Acta Polymerica Sinica, 2010, 006, 1050-1054.	0.0	1
187	PPy-Encapsulated Na2Li2Ti6O14 Composites as High-Performance Anodes for Li-Ion Battery. Acta Metallurgica Sinica (English Letters), 0, , .	1.5	1
188	Construction of Na2Li2Ti6O14@ LiAlO2 Composites as Anode Materials of Lithium-Ion Battery with High Performance. Acta Metallurgica Sinica (English Letters), 2022, 35, 2047-2056.	1.5	1
189	Measuration of Nanometer Grain Content for Complex Material by Spectrophotometric Method. , 2006, , .		0
190	FePO4-coated Li5Cr7Ti6O25 nanocomposites as anode materials for high-performance lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2021, , .	2.9	0
191	Enhancing lithium storage performance of Na2Li2Ti6O14 by biomass carbon coating for Li-ion batteries. Materials Chemistry and Physics, 2022, 287, 126341.	2.0	0