Richard M Schultz

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/442037/richard-m-schultz-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16,872 126 76 179 h-index g-index citations papers 186 6.59 18,543 5.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
179	Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model <i>Frontiers in Cell and Developmental Biology</i> , 2022 , 10, 884088	5.7	1
178	Sex-specific effects of in vitro fertilization on adult metabolic outcomes and hepatic transcriptome and proteome in mouse. <i>FASEB Journal</i> , 2021 , 35, e21523	0.9	2
177	Challenges to making an egg. <i>Nature Cell Biology</i> , 2021 , 23, 9-10	23.4	2
176	Assisted reproductive technologies induce temporally specific placental defects and the preeclampsia risk marker sFLT1 in mouse. <i>Development (Cambridge)</i> , 2020 , 147,	6.6	9
175	Transcript profiling of bovine embryos implicates specific transcription factors in the maternal-to-embryo transition. <i>Biology of Reproduction</i> , 2020 , 102, 671-679	3.9	5
174	Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. <i>Nature Communications</i> , 2020 , 11, 4654	17.4	13
173	Paternal genome rescues mouse preimplantation embryo development in the absence of maternally-recruited EZH2 activity. <i>Epigenetics</i> , 2019 , 14, 94-108	5.7	3
172	The oocyte-to-embryo transition in mouse: past, present, and future. <i>Biology of Reproduction</i> , 2018 , 99, 160-174	3.9	37
171	Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. <i>PLoS Genetics</i> , 2018 , 14, e1007412	6	211
170	Role of in maternal mRNA turnover. <i>Life Science Alliance</i> , 2018 , 1, e201800084	5.8	23
169	Minor zygotic gene activation is essential for mouse preimplantation development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6780-E6788	11.5	52
168	Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. <i>Genome Research</i> , 2017 , 27, 1384-1394	9.7	72
167	Spindle asymmetry drives non-Mendelian chromosome segregation. <i>Science</i> , 2017 , 358, 668-672	33.3	119
166	Cell Biology of Cheating-Transmission of Centromeres and Other Selfish Elements Through Asymmetric Meiosis. <i>Progress in Molecular and Subcellular Biology</i> , 2017 , 56, 377-396	3	15
165	Expanded Satellite Repeats Amplify a Discrete CENP-A Nucleosome Assembly Site on Chromosomes that Drive in Female Meiosis. <i>Current Biology</i> , 2017 , 27, 2365-2373.e8	6.3	86
164	Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos. <i>Epigenetics</i> , 2017 , 12, 1048-1056	5.7	18
163	DNA damage response during mouse oocyte maturation. <i>Cell Cycle</i> , 2016 , 15, 546-58	4.7	21

(2013-2016)

162	Morphokinetic Evaluation of Embryo Development in a Mouse Model: Functional and Molecular Correlates. <i>Biology of Reproduction</i> , 2016 , 94, 84	3.9	13
161	Long-Term Retention of CENP-A Nucleosomes in Mammalian Oocytes Underpins Transgenerational Inheritance of Centromere Identity. <i>Current Biology</i> , 2016 , 26, 1110-6	6.3	54
160	Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. <i>Current Topics in Developmental Biology</i> , 2015 , 113, 305-49	5.3	79
159	Spatial Regulation of Kinetochore Microtubule Attachments by Destabilization at Spindle Poles in Meiosis I. <i>Current Biology</i> , 2015 , 25, 1835-41	6.3	75
158	Essential Role for endogenous siRNAs during meiosis in mouse oocytes. <i>PLoS Genetics</i> , 2015 , 11, e1005	043	72
157	The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3U processing. <i>EMBO Journal</i> , 2015 , 34, 1523-37	13	79
156	RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. <i>Biology of Reproduction</i> , 2015 , 92, 105	3.9	23
155	Maternal SIN3A regulates reprogramming of gene expression during mouse preimplantation development. <i>Biology of Reproduction</i> , 2015 , 93, 89	3.9	23
154	The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. <i>Human Molecular Genetics</i> , 2015 , 24, 6975-85	5.6	86
153	Mobilization of Dormant Cnot7 mRNA Promotes Deadenylation of Maternal Transcripts During Mouse Oocyte Maturation. <i>Biology of Reproduction</i> , 2015 , 93, 48	3.9	38
152	Accelerated reproductive aging in females lacking a novel centromere protein SYCP2L. <i>Human Molecular Genetics</i> , 2015 , 24, 6505-14	5.6	12
151	A DNMT3A2-HDAC2 Complex Is Essential for Genomic Imprinting and Genome Integrity in Mouse Oocytes. <i>Cell Reports</i> , 2015 , 13, 1552-60	10.6	27
150	In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. <i>Biology of Reproduction</i> , 2014 , 90, 22	3.9	88
149	Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. <i>Current Biology</i> , 2014 , 24, 2295-300	6.3	152
148	Specificity of calcium/calmodulin-dependent protein kinases in mouse egg activation. <i>Cell Cycle</i> , 2014 , 13, 1482-8	4.7	3
147	Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. <i>PLoS Genetics</i> , 2014 , 10, e1004317	6	53
146	Knockdown of RBBP7 unveils a requirement of histone deacetylation for CPC function in mouse oocytes. <i>Cell Cycle</i> , 2014 , 13, 600-11	4.7	24
145	Cdc25A activity is required for the metaphase II arrest in mouse oocytes. <i>Journal of Cell Science</i> , 2013 , 126, 1081-5	5.3	33

144	Increased CDK1 activity determines the timing of kinetochore-microtubule attachments in meiosis I. <i>Journal of Cell Biology</i> , 2013 , 202, 221-9	7.3	59
143	Histone deacetylase 2 (HDAC2) regulates chromosome segregation and kinetochore function via H4K16 deacetylation during oocyte maturation in mouse. <i>PLoS Genetics</i> , 2013 , 9, e1003377	6	67
142	Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. <i>Biology of Reproduction</i> , 2013 , 88, 11	3.9	65
141	Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E481-9	11.5	96
140	Aurora kinase A drives MTOC biogenesis but does not trigger resumption of meiosis in mouse oocytes matured in vivo. <i>Biology of Reproduction</i> , 2012 , 87, 85	3.9	29
139	Maternally recruited Aurora C kinase is more stable than Aurora B to support mouse oocyte maturation and early development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E2215-22	11.5	74
138	Expression of variant ribosomal RNA genes in mouse oocytes and preimplantation embryos. <i>Biology of Reproduction</i> , 2011 , 84, 944-6	3.9	8
137	Absence of MSY2 in mouse oocytes perturbs oocyte growth and maturation, RNA stability, and the transcriptome. <i>Biology of Reproduction</i> , 2011 , 85, 575-83	3.9	52
136	Sox2 modulates reprogramming of gene expression in two-cell mouse embryos. <i>Biology of Reproduction</i> , 2011 , 85, 409-16	3.9	46
135	Adult body weight is programmed by a redox-regulated and energy-dependent process during the pronuclear stage in mouse. <i>PLoS ONE</i> , 2011 , 6, e29388	3.7	40
134	Metastasis tumor antigen 2 (MTA2) is involved in proper imprinted expression of H19 and Peg3 during mouse preimplantation development. <i>Biology of Reproduction</i> , 2010 , 83, 1027-35	3.9	20
133	Gene expression profiling of mouse oocytes and preimplantation embryos. <i>Methods in Enzymology</i> , 2010 , 477, 457-80	1.7	6
132	The gamma isoform of CaM kinase II controls mouse egg activation by regulating cell cycle resumption. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 81-6	11.5	93
131	P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. <i>Biology of Reproduction</i> , 2010 , 82, 1008-17	3.9	98
130	Recruitment of Orc6l, a dormant maternal mRNA in mouse oocytes, is essential for DNA replication in 1-cell embryos. <i>Developmental Biology</i> , 2010 , 341, 205-12	3.1	21
129	MicroRNA activity is suppressed in mouse oocytes. <i>Current Biology</i> , 2010 , 20, 265-70	6.3	194
128	Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. <i>Biology of Reproduction</i> , 2009 , 81, 768-76	3.9	102
127	CDC14B acts through FZR1 (CDH1) to prevent meiotic maturation of mouse oocytes. <i>Biology of Reproduction</i> , 2009 , 80, 795-803	3.9	56

(2007-2009)

126	Overexpression of CDC14B causes mitotic arrest and inhibits zygotic genome activation in mouse preimplantation embryos. <i>Cell Cycle</i> , 2009 , 8, 3904-13	4.7	11
125	Aurora kinase B modulates chromosome alignment in mouse oocytes. <i>Molecular Reproduction and Development</i> , 2009 , 76, 1094-105	2.6	72
124	The effect of blastomere biopsy on preimplantation mouse embryo development and global gene expression. <i>Fertility and Sterility</i> , 2009 , 91, 1462-5	4.8	25
123	The CDC14A phosphatase regulates oocyte maturation in mouse. <i>Cell Cycle</i> , 2009 , 8, 1090-8	4.7	30
122	PKA and CDC25B: at last connected. <i>Cell Cycle</i> , 2009 , 8, 516-7	4.7	3
121	Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. <i>Nature</i> , 2008 , 453, 534-8	50.4	848
120	Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. <i>Developmental Biology</i> , 2008 , 316, 397-407	3.1	216
119	CDC2A (CDK1)-mediated phosphorylation of MSY2 triggers maternal mRNA degradation during mouse oocyte maturation. <i>Developmental Biology</i> , 2008 , 321, 205-15	3.1	38
118	Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos. <i>Developmental Biology</i> , 2008 , 319, 110-20	3.1	125
117	Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. <i>Development (Cambridge)</i> , 2008 , 135, 2729-38	6.6	92
116	Aurora kinase A controls meiosis I progression in mouse oocytes. <i>Cell Cycle</i> , 2008 , 7, 2368-76	4.7	72
115	UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes. <i>Biology of Reproduction</i> , 2008 , 79, 906-13	3.9	40
114	Mouse ribosomal RNA genes contain multiple differentially regulated variants. <i>PLoS ONE</i> , 2008 , 3, e184	13 ,.7	43
113	Critical roles for Dicer in the female germline. <i>Genes and Development</i> , 2007 , 21, 682-93	12.6	386
112	In the absence of the mouse DNA/RNA-binding protein MSY2, messenger RNA instability leads to spermatogenic arrest. <i>Biology of Reproduction</i> , 2007 , 76, 48-54	3.9	49
111	Of light and mouse embryos: less is more. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 14547-8	11.5	13
110	Tough beginnings: alterations in the transcriptome of cloned embryos during the first two cell cycles. <i>Developmental Biology</i> , 2007 , 304, 75-89	3.1	66
109	Alterations of PLCbeta1 in mouse eggs change calcium oscillatory behavior following fertilization. <i>Developmental Biology</i> , 2007 , 312, 321-30	3.1	72

108	The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. <i>Developmental Cell</i> , 2007 , 12, 301-8	10.2	145
107	Implication of nucleolar protein SURF6 in ribosome biogenesis and preimplantation mouse development. <i>Biology of Reproduction</i> , 2006 , 75, 690-6	3.9	28
106	Maternal BRG1 regulates zygotic genome activation in the mouse. <i>Genes and Development</i> , 2006 , 20, 1744-54	12.6	249
105	Basonuclin: a novel mammalian maternal-effect gene. <i>Development (Cambridge)</i> , 2006 , 133, 2053-62	6.6	84
104	PKB/AKT is involved in resumption of meiosis in mouse oocytes. <i>Biology of the Cell</i> , 2006 , 98, 111-23	3.5	76
103	Effects of oxygen tension on gene expression in preimplantation mouse embryos. <i>Fertility and Sterility</i> , 2006 , 86, 1252-65, 1265.e1-36	4.8	153
102	Abundant transcripts from retrotransposons are unstable in fully grown mouse oocytes. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 347, 36-43	3.4	26
101	Deletion of the DNA/RNA-binding protein MSY2 leads to post-meiotic arrest. <i>Molecular and Cellular Endocrinology</i> , 2006 , 250, 20-4	4.4	28
100	Role of calcium signals in early development. Seminars in Cell and Developmental Biology, 2006, 17, 324	- 3,2 5	134
99	Calmodulin-dependent protein kinase II triggers mouse egg activation and embryo development in the absence of Ca2+ oscillations. <i>Developmental Biology</i> , 2006 , 296, 388-95	3.1	58
98	Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. <i>Developmental Biology</i> , 2006 , 300, 534-44	3.1	181
97	Identification of candidate maternal-effect genes through comparison of multiple microarray data sets. <i>Mammalian Genome</i> , 2006 , 17, 941-9	3.2	19
96	Phosphorylated MARCKS: a novel centrosome component that also defines a peripheral subdomain of the cortical actin cap in mouse eggs. <i>Developmental Biology</i> , 2005 , 280, 26-37	3.1	31
95	Egg activation events are regulated by the duration of a sustained [Ca2+]cyt signal in the mouse. <i>Developmental Biology</i> , 2005 , 282, 39-54	3.1	135
94	RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. <i>Developmental Biology</i> , 2005 , 283, 40-57	3.1	198
93	Cyclin A2-CDK2 regulates embryonic gene activation in 1-cell mouse embryos. <i>Developmental Biology</i> , 2005 , 286, 102-13	3.1	24
92	Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. <i>Developmental Biology</i> , 2005 , 286, 464-71	3.1	81
91	Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. <i>Developmental Biology</i> , 2005 , 286, 493-506	3.1	191

90	From egg to embryo: a peripatetic journey. <i>Reproduction</i> , 2005 , 130, 825-8	3.8	35
89	Transgenic RNA interference reveals role for mouse sperm phospholipase Czeta in triggering Ca2+ oscillations during fertilization. <i>Biology of Reproduction</i> , 2005 , 72, 992-6	3.9	151
88	CDC6 requirement for spindle formation during maturation of mouse oocytes. <i>Biology of Reproduction</i> , 2005 , 72, 188-94	3.9	41
87	Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 5755-60	11.5	122
86	The DNA/RNA-binding protein MSY2 marks specific transcripts for cytoplasmic storage in mouse male germ cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 1513-8	11.5	79
85	Long-term effects of culture of preimplantation mouse embryos on behavior. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1595-600	11.5	233
84	Timing of Plk1 and MPF activation during porcine oocyte maturation. <i>Molecular Reproduction and Development</i> , 2004 , 69, 11-6	2.6	20
83	Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. <i>Reproduction</i> , 2004 , 128, 301-11	3.8	216
82	Selective loss of imprinting in the placenta following preimplantation development in culture. <i>Development (Cambridge)</i> , 2004 , 131, 3727-35	6.6	332
81	Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility. <i>Developmental Biology</i> , 2004 , 268, 195-206	3.1	70
80	RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. <i>Developmental Biology</i> , 2004 , 269, 276-85	3.1	155
79	Transcript profiling during preimplantation mouse development. <i>Developmental Biology</i> , 2004 , 272, 483	3- 9.6	352
78	Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. <i>Biology of Reproduction</i> , 2003 , 68, 31-9	3.9	86
77	Acquisition of transcriptional competence in the 1-cell mouse embryo: requirement for recruitment of maternal mRNAs. <i>Molecular Reproduction and Development</i> , 2003 , 64, 270-4	2.6	44
76	Maturation-associated increase in IP3 receptor type 1: role in conferring increased IP3 sensitivity and Ca2+ oscillatory behavior in mouse eggs. <i>Developmental Biology</i> , 2003 , 254, 163-71	3.1	71
75	Requirement for RNA-binding activity of MSY2 for cytoplasmic localization and retention in mouse oocytes. <i>Developmental Biology</i> , 2003 , 255, 249-62	3.1	24
74	Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. <i>Developmental Biology</i> , 2003 , 256, 187-93	3.1	106
73	Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. <i>Nature Genetics</i> , 2002 , 30, 446-9	36.3	244

72	The science of ART. <i>Science</i> , 2002 , 296, 2188-90	33.3	106
71	RNA-binding properties and translation repression in vitro by germ cell-specific MSY2 protein. <i>Biology of Reproduction</i> , 2002 , 67, 1093-8	3.9	57
70	The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. <i>Human Reproduction Update</i> , 2002 , 8, 323-31	15.8	364
69	Egg-to-Embryo Transition Is Driven by Differential Responses to Ca2+ Oscillation Number. <i>Developmental Biology</i> , 2002 , 250, 280-291	3.1	325
68	Egg-to-embryo transition is driven by differential responses to Ca(2+) oscillation number. <i>Developmental Biology</i> , 2002 , 250, 280-91	3.1	96
67	Expression of MSY2 in mouse oocytes and preimplantation embryos. <i>Biology of Reproduction</i> , 2001 , 65, 1260-70	3.9	91
66	Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. <i>Biology of Reproduction</i> , 2001 , 64, 1713-21	3.9	107
65	RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. <i>Biochemical and Biophysical Research Communications</i> , 2001 , 287, 1099-104	3.4	115
64	Initiation of a chromatin-based transcriptionally repressive state in the preimplantation mouse embryo: lack of a primary role for expression of somatic histone H1. <i>Molecular Reproduction and Development</i> , 2000 , 55, 241-8	2.6	17
63	Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. <i>Biology of Reproduction</i> , 2000 , 62, 1526-35	3.9	620
62	Acquisition of meiotic competence in mouse oocytes: absolute amounts of p34(cdc2), cyclin B1, cdc25C, and wee1 in meiotically incompetent and competent oocytes. <i>Biology of Reproduction</i> , 2000 , 63, 1610-6	3.9	88
61	Effects of perturbation of cell polarity on molecular markers of sperm-egg binding sites on mouse eggs. <i>Biology of Reproduction</i> , 2000 , 62, 76-84	3.9	33
60	Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes, Without influencing chromosome condensation activity. <i>Biology of Reproduction</i> , 2000 , 62, 292-302	3.9	100
59	Developmental change in TATA-box utilization during preimplantation mouse development. <i>Developmental Biology</i> , 2000 , 218, 275-83	3.1	56
58	Assessment of DNA damage in individual hamster embryos by comet assay. <i>Molecular Reproduction and Development</i> , 1999 , 54, 1-7	2.6	61
57	Reprogramming of gene expression during preimplantation development. <i>The Journal of Experimental Zoology</i> , 1999 , 285, 276-82		97
56	DNA replication in the 1-cell mouse embryo: stimulatory effect of histone acetylation. <i>Zygote</i> , 1999 , 7, 165-72	1.6	65
55	Increased incidence of apoptosis in transforming growth factor alpha-deficient mouse blastocysts. Biology of Reproduction, 1998, 59, 136-44	3.9	98

54	Molecular cloning and expression of the mouse translation initiation factor eIF-1A. <i>Nucleic Acids Research</i> , 1998 , 26, 4739-47	20.1	9
53	Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. <i>Biology of Reproduction</i> , 1997 , 57, 743-50	3.9	163
52	Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. <i>Developmental Biology</i> , 1997 , 181, 296-307	3.1	463
51	Regulation of gene expression in the preimplantation mouse embryo: temporal and spatial patterns of expression of the transcription factor Sp1. <i>Molecular Reproduction and Development</i> , 1997 , 46, 268-77	2.6	50
50	Stage-dependent redistributions of acetylated histones in nuclei of the early preimplantation mouse embryo. <i>Molecular Reproduction and Development</i> , 1997 , 47, 421-9	2.6	83
49	Role of the first round of DNA replication in reprogramming gene expression in the preimplantation mouse embryo. <i>Molecular Reproduction and Development</i> , 1997 , 47, 430-4	2.6	31
48	Transient expression of translation initiation factor eIF-4C during the 2-cell stage of the preimplantation mouse embryo: identification by mRNA differential display and the role of DNA replication in zygotic gene activation. <i>Developmental Biology</i> , 1996 , 174, 190-201	3.1	144
47	RT-PCR-based method to localize the spatial expression of genes in the mouse blastocyst. <i>Molecular Reproduction and Development</i> , 1996 , 44, 171-8	2.6	25
46	G protein gene expression during mouse oocyte growth and maturation, and preimplantation embryo development. <i>Molecular Reproduction and Development</i> , 1996 , 44, 315-23	2.6	33
45	Temporal patterns of gene expression of G1-S cyclins and cdks during the first and second mitotic cell cycles in mouse embryos. <i>Molecular Reproduction and Development</i> , 1996 , 45, 264-75	2.6	65
44	Molecular basis of mammalian egg activation. <i>Current Topics in Developmental Biology</i> , 1995 , 30, 21-62	5.3	190
43	Potential role of mitogen-activated protein kinase in pronuclear envelope assembly and disassembly following fertilization of mouse eggs. <i>Biology of Reproduction</i> , 1995 , 53, 692-9	3.9	139
42	Identification and localization of integrin subunits in oocytes and eggs of the mouse. <i>Molecular Reproduction and Development</i> , 1995 , 40, 211-20	2.6	86
41	Modulation of gene expression in the preimplantation mouse embryo by TGF-alpha and TGF-beta. <i>Molecular Reproduction and Development</i> , 1995 , 41, 133-9	2.6	43
40	Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. <i>Molecular Reproduction and Development</i> , 1995 , 41, 232-8	2.6	451
39	Temporal pattern of IGF-I expression during mouse preimplantation embryogenesis. <i>Molecular Reproduction and Development</i> , 1994 , 37, 21-6	2.6	53
38	Expression patterns of novel genes during mouse preimplantation embryogenesis. <i>Molecular Reproduction and Development</i> , 1994 , 37, 121-9	2.6	136
37	Rapid, nonradioactive, and quantitative method to analyze zona pellucida modifications in single mouse eggs. <i>Molecular Reproduction and Development</i> , 1994 , 38, 91-3	2.6	22

36	Mouse preimplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. <i>Molecular Reproduction and Development</i> , 1994 , 38, 131-41	2.6	92
35	Reporter gene expression in G2 of the 1-cell mouse embryo. <i>Developmental Biology</i> , 1993 , 156, 552-6	3.1	168
34	Regulation of the polyspermy block in the mouse egg: maturation-dependent differences in cortical granule exocytosis and zona pellucida modifications induced by inositol 1,4,5-trisphosphate and an activator of protein kinase C. <i>Biology of Reproduction</i> , 1993 , 48, 1251-7	3.9	91
33	Regulation of zygotic gene activation in the mouse. <i>BioEssays</i> , 1993 , 15, 531-8	4.1	482
32	Protein secretion by the mouse blastocyst: stimulatory effect on secretion into the blastocoel by transforming growth factor-alpha. <i>Molecular Reproduction and Development</i> , 1993 , 34, 396-401	2.6	21
31	Effect of sodium and betaine in culture media on development and relative rates of protein synthesis in preimplantation mouse embryos in vitro. <i>Molecular Reproduction and Development</i> , 1993 , 35, 24-8	2.6	74
30	Acquisition of a transcriptionally permissive state during the 1-cell stage of mouse embryogenesis. <i>Developmental Biology</i> , 1992 , 149, 457-62	3.1	132
29	Zygotic gene activation in the mouse embryo: involvement of cyclic adenosine monophosphate-dependent protein kinase and appearance of an AP-1-like activity. <i>Molecular Reproduction and Development</i> , 1992 , 32, 209-16	2.6	14
28	Changes in cAMP phosphodiesterase activity and cAMP concentration during mouse preimplantation development. <i>Molecular Reproduction and Development</i> , 1992 , 32, 349-53	2.6	6
27	Activation of a two-cell stage-specific gene following transfer of heterologous nuclei into enucleated mouse embryos. <i>Molecular Reproduction and Development</i> , 1991 , 30, 182-6	2.6	52
26	Protein secretion by the mouse blastocyst: differences in the polypeptide composition secreted into the blastocoel and medium. <i>Biology of Reproduction</i> , 1991 , 45, 328-33	3.9	17
25	Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. <i>Developmental Biology</i> , 1991 , 144, 392-404	3.1	109
24	Regulation of mouse preimplantation development: inhibitory effect of the calmodulin antagonist W-7 on the first cleavage. <i>Molecular Reproduction and Development</i> , 1990 , 26, 211-6	2.6	11
23	Regulation of mouse preimplantation development: inhibitory effect of genistein, an inhibitor of tyrosine protein phosphorylation, on cleavage of one-cell embryos. <i>The Journal of Experimental Zoology</i> , 1990 , 256, 44-53		24
22	Fetuin inhibits zona pellucida hardening and conversion of ZP2 to ZP2f during spontaneous mouse oocyte maturation in vitro in the absence of serum. <i>Biology of Reproduction</i> , 1990 , 43, 891-7	3.9	121
21	Regulation of mouse preimplantation development: differential effects of CZB medium and Whitten's medium on rates and patterns of protein synthesis in 2-cell embryos. <i>Biology of Reproduction</i> , 1989 , 41, 317-22	3.9	34
20	Regulation of mouse preimplantation development: inhibition of synthesis of proteins in the two-cell embryo that require transcription by inhibitors of cAMP-dependent protein kinase. <i>Developmental Biology</i> , 1989 , 133, 588-99	3.1	63
19	Egg-induced modifications of the zona pellucida of mouse eggs: effects of microinjected inositol 1,4,5-trisphosphate. <i>Developmental Biology</i> , 1989 , 133, 295-304	3.1	103

18	Variability in electrophoretic mobility of Gi-like proteins: effect of SDS. FEBS Letters, 1989, 243, 409-12	3.8	12
17	Protein phosphorylation in meiotically competent and incompetent mouse oocytes. <i>Molecular Reproduction and Development</i> , 1988 , 1, 19-25	2.6	28
16	Effects of phorbol esters and a diacylglycerol on mouse eggs: inhibition of fertilization and modification of the zona pellucida. <i>Developmental Biology</i> , 1987 , 119, 199-209	3.1	88
15	Inhibition of mouse oocyte cyclic AMP phosphodiesterase by steroid hormones: a possible mechanism for steroid hormone inhibition of oocyte maturation. <i>The Journal of Experimental Zoology</i> , 1987 , 243, 489-93		19
14	Stage-specific changes in protein phosphorylation accompanying meiotic maturation of mouse oocytes and fertilization of mouse eggs. <i>The Journal of Experimental Zoology</i> , 1986 , 239, 401-9		67
13	Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. <i>Developmental Biology</i> , 1986 , 114, 453-62	3.1	217
12	Development of activatable adenylate cyclase in the preimplantation mouse embryo and a role for cyclic AMP in blastocoel formation. <i>Cell</i> , 1986 , 46, 95-103	56.2	72
11	Regulation of mouse oocyte growth: probable nutritional role for intercellular communication between follicle cells and oocytes in oocyte growth. <i>The Journal of Experimental Zoology</i> , 1984 , 229, 31	7-25	73
10	Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. <i>Developmental Biology</i> , 1983 , 97, 264-73	3.1	362
9	Biochemical studies of mammalian oogenesis: Synthesis of 5S and 4S RNA during growth of the mouse oocyte. <i>Gamete Research</i> , 1983 , 8, 379-383		2
8	Differential action of sulfated glycosaminoglycans on follicle-stimulating hormone-induced functions of cumuli oophori isolated from mice. <i>Biology of Reproduction</i> , 1982 , 27, 399-406	3.9	13
7	Biochemical studies of mammalian oogenesis: possible existence of a ribosomal and poly(A)-containing RNA-protein supramolecular complex in mouse oocytes. <i>The Journal of Experimental Zoology</i> , 1982 , 220, 251-60		12
6	Biochemical studies of mammalian oogenesis: synthesis and stability of various classes of RNA during growth of the mouse oocyte in vitro. <i>Developmental Biology</i> , 1981 , 86, 373-83	3.1	84
5	Biochemical studies of mammalian oogenesis: kinetics of accumulation of total and poly(A)-containing RNA during growth of the mouse oocyte. <i>The Journal of Experimental Zoology</i> , 1981 , 215, 191-200		76
4	Ribonucleoside metabolism by mouse oocytes: metabolic cooperativity between the fully grown oocyte and cumulus cells. <i>The Journal of Experimental Zoology</i> , 1980 , 214, 355-64		88
3	Program of early development in the mammal: changes in the patterns and absolute rates of tubulin and total protein synthesis during oocyte growth in the mouse. <i>Developmental Biology</i> , 1979 , 73, 120-33	3.1	80
2	Program of early development in the mammal: changes in patterns and absolute rates of tubulin and total protein synthesis during oogenesis and early embryogenesis in the mouse. <i>Developmental Biology</i> , 1979 , 68, 341-59	3.1	103
1	Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation		3