List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4420107/publications.pdf Version: 2024-02-01

ΕΕΕΡΕΥÂΑ ΗΛΟΛΕΥ

#	Article	IF	CITATIONS
1	Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology and Evolution, 2001, 16, 547-554.	4.2	482
2	Life-history strategies in parasitoid wasps: a comparative analysis of â€~ovigeny'. Journal of Animal Ecology, 2001, 70, 442-458.	1.3	431
3	Resource Acquisition, Allocation, and Utilization in Parasitoid Reproductive Strategies. Annual Review of Entomology, 2008, 53, 361-385.	5.7	353
4	Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomologia Experimentalis Et Applicata, 2005, 117, 1-13.	0.7	250
5	Intrinsic Inter- and Intraspecific Competition in Parasitoid Wasps. Annual Review of Entomology, 2013, 58, 333-351.	5.7	247
6	Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature, 2008, 456, 946-948.	13.7	238
7	Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. Journal of Animal Ecology, 2005, 74, 1121-1130.	1.3	208
8	Response of Native Insect Communities to Invasive Plants. Annual Review of Entomology, 2014, 59, 119-141.	5.7	208
9	Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecology Letters, 2005, 8, 652-661.	3.0	198
10	GENETIC VARIATION IN DEFENSE CHEMISTRY IN WILD CABBAGES AFFECTS HERBIVORES AND THEIR ENDOPARASITOIDS. Ecology, 2008, 89, 1616-1626.	1.5	193
11	Flexible Larval Growth Allows Use of a Range of Host Sizes by a Parasitoid Wasp. Ecology, 1994, 75, 1420-1428.	1.5	186
12	Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. Journal of Animal Ecology, 2003, 72, 520-531.	1.3	181
13	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	3.4	176
14	THE DEVELOPMENTAL STRATEGIES OF ENDOPARASITOID WASPS VARY WITH HOST FEEDING ECOLOGY. Ecology, 2002, 83, 2439-2451.	1.5	169
15	Performance of Generalist and Specialist Herbivores and their Endoparasitoids Differs on Cultivated and Wild Brassica Populations. Journal of Chemical Ecology, 2008, 34, 132-143.	0.9	169
16	Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host. PLoS Biology, 2012, 10, e1001435.	2.6	168
17	Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8677-8682.	3.3	159
18	Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos, 2007, 116, 367-376.	1.2	157

#	Article	IF	CITATIONS
19	Dynamic effects of parasitism by an endoparasitoid wasp on the development of two host species: implications for host quality and parasitoid fitness. Ecological Entomology, 2000, 25, 267-278.	1.1	152
20	Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels. PLoS ONE, 2012, 7, e43607.	1.1	152
21	Trophic interactions in a changing world. Basic and Applied Ecology, 2004, 5, 487-494.	1.2	151
22	Plant invaders and their novel natural enemies: who is na $ ilde{A}$ ve?. Ecology Letters, 2009, 12, 107-117.	3.0	149
23	Interactions between aboveground and belowground induced responses against phytophages. Basic and Applied Ecology, 2003, 4, 63-77.	1.2	147
24	The evolutionary improbability of †̃generalism' in nature, with special reference to insects. Biological Journal of the Linnean Society, 2011, 103, 1-18.	0.7	143
25	Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate. Journal of Chemical Ecology, 2007, 33, 1831-1844.	0.9	135
26	Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochemistry Reviews, 2009, 8, 187-206.	3.1	130
27	Effects of Quantitative Variation in Allelochemicals in Plantago lanceolata on Development of a Generalist and a Specialist Herbivore and their Endoparasitoids. Journal of Chemical Ecology, 2005, 31, 287-302.	0.9	125
28	Development of the parasitoid, Cotesia rubecula (Hymenoptera: Braconidae) in Pieris rapae and Pieris brassicae (Lepidoptera: Pieridae): evidence for host regulation. Journal of Insect Physiology, 1999, 45, 173-182.	0.9	118
29	Development of the solitary endoparasitoidMicroplitis demolitor: host quality does not increase with host age and size. Ecological Entomology, 2004, 29, 35-43.	1.1	117
30	Climate changeâ€mediated temperature extremes and insects: From outbreaks to breakdowns. Global Change Biology, 2020, 26, 6685-6701.	4.2	114
31	Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia, 2007, 152, 257-264.	0.9	112
32	Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia, 2009, 160, 299-308.	0.9	106
33	Interactions between invasive plants and insect herbivores: A plea for a multitrophic perspective. Biological Conservation, 2010, 143, 2251-2259.	1.9	98
34	INTERPLAY BETWEENSENECIO JACOBAEAAND PLANT, SOIL, AND ABOVEGROUND INSECT COMMUNITY COMPOSITION. Ecology, 2006, 87, 2002-2013.	1.5	97
35	Differences in larval feeding behavior correlate with altered developmental strategies in two parasitic wasps: implications for the size-fitness hypothesis. Oikos, 2000, 88, 621-629.	1.2	96
36	Competition induces adaptive shifts in caste ratios of a polyembryonic wasp. Nature, 2000, 406, 183-186.	13.7	92

#	Article	IF	CITATIONS
37	Root Herbivore Effects on Aboveground Multitrophic Interactions: Patterns, Processes and Mechanisms. Journal of Chemical Ecology, 2012, 38, 755-767.	0.9	90
38	Reduced foraging efficiency of a parasitoid under habitat complexity: implications for population stability and species coexistence. Journal of Animal Ecology, 2005, 74, 1059-1068.	1.3	87
39	Smelling the Wood from the Trees: Non-Linear Parasitoid Responses to Volatile Attractants Produced by Wild and Cultivated Cabbage. Journal of Chemical Ecology, 2011, 37, 795-807.	0.9	85
40	Lifetime Reproductive Success in the Solitary Endoparasitoid, Venturia canescens. Journal of Insect Behavior, 2001, 14, 573-593.	0.4	75
41	The effect of superparasitism on development of the solitary parasitoid wasp, Venturia canescens (Hymenoptera: Ichneumonidae). Ecological Entomology, 1993, 18, 203-208.	1.1	69
42	Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Ecological Entomology, 2007, 32, 15-23.	1.1	68
43	Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps?. Oikos, 2009, 118, 733-742.	1.2	68
44	Venturia canescens parasitizing Galleria mellonella and Anagasta kuehniella: differing suitability of two hosts with highly variable growth potential. Entomologia Experimentalis Et Applicata, 1997, 84, 93-100.	0.7	67
45	Effects of Soil Organisms on Aboveground Plant-Insect Interactions in the Field: Patterns, Mechanisms and the Role of Methodology. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	67
46	Ecological fits, mis-fits and lotteries involving insect herbivores on the invasive plant, Bunias orientalis. Biological Invasions, 2010, 12, 3045-3059.	1.2	64
47	Second and third trophic level effects of differences in plant species reflect dietary specialisation of herbivores and their endoparasitoids. Entomologia Experimentalis Et Applicata, 2003, 109, 73-82.	0.7	63
48	Effects of changes in plant species richness and community traits on carabid assemblages and feeding guilds. Agriculture, Ecosystems and Environment, 2008, 127, 100-106.	2.5	62
49	Venturia canescens parasitizing Galleria mellonella and Anagasta kuehniella: is the parasitoid a conformer or regulator?. Journal of Insect Physiology, 1996, 42, 1017-1025.	0.9	59
50	The effect of different dietary sugars and honey on longevity and fecundity in two hyperparasitoid wasps. Journal of Insect Physiology, 2012, 58, 816-823.	0.9	59
51	Oviposition Cues for a Specialist Butterfly–Plant Chemistry and Size. Journal of Chemical Ecology, 2008, 34, 1202-1212.	0.9	56
52	Differential Performance of a Specialist and Two Generalist Herbivores and Their Parasitoids on Plantago lanceolata. Journal of Chemical Ecology, 2011, 37, 765-778.	0.9	55
53	Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia, 2011, 166, 421-431.	0.9	55
54	The effect of host nutrition on growth and development of the parasitoid wasp <i>Venturia canescens</i> . Entomologia Experimentalis Et Applicata, 1995, 75, 213-220.	0.7	54

#	Article	IF	CITATIONS
55	Influence of adult nutrition on the relationship between body size and reproductive parameters in a parasitoid wasp. Ecological Entomology, 2005, 30, 571-580.	1.1	54
56	Development of an Insect Herbivore and its Pupal Parasitoid Reflect Differences in Direct Plant Defense. Journal of Chemical Ecology, 2007, 33, 1556-1569.	0.9	54
57	Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5205-5210.	3.3	54
58	Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. Journal of Ecology, 2018, 106, 1217-1229.	1.9	54
59	Temporal changes affect plant chemistry and tritrophic interactions. Basic and Applied Ecology, 2007, 8, 421-433.	1.2	52
60	Parasitoid load affects plant fitness in a tritrophic system. Entomologia Experimentalis Et Applicata, 2008, 128, 172-183.	0.7	51
61	Chemical and structural effects of invasive plants on herbivore–parasitoid/predator interactions in native communities. Entomologia Experimentalis Et Applicata, 2012, 144, 14-26.	0.7	51
62	The â€~generalism' debate: misinterpreting the term in the empirical literature focusing on dietary breadth in insects. Biological Journal of the Linnean Society, 2016, 119, 265-282.	0.7	51
63	Comparing and contrasting development and reproductive strategies in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: Ichneumonidae). Evolutionary Ecology, 2008, 22, 153-166.	0.5	49
64	Evolution of Plant Growth and Defense in a Continental Introduction. American Naturalist, 2015, 186, E1-E15.	1.0	49
65	The effects of host weight at parasitism on fitness correlates of the gregarious koinobiont parasitoid Microplitis tristis and consequences for food consumption by its host, Hadena bicruris. Entomologia Experimentalis Et Applicata, 2003, 108, 95-106.	0.7	48
66	Influence of presence and spatial arrangement of belowground insects on hostâ€plant selection of aboveground insects: a field study. Ecological Entomology, 2009, 34, 339-345.	1.1	45
67	Fitness consequences of indirect plant defence in the annual weed, <i><scp>S</scp>inapis arvensis</i> . Functional Ecology, 2015, 29, 1019-1025.	1.7	45
68	Internet Blogs, Polar Bears, and Climate-Change Denial by Proxy. BioScience, 2018, 68, 281-287.	2.2	45
69	A plant pathogen reduces the enemy–free space of an insect herbivore on a shared host plant. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2197-2204.	1.2	44
70	Nutritional suitability and ecological relevance of Arabidopsis thaliana and Brassica oleracea as foodplants for the cabbage butterfly, Pieris rapae. Plant Ecology, 2007, 189, 117-126.	0.7	42
71	Variation in the specificity of plant volatiles and their use by a specialist and a generalist parasitoid. Animal Behaviour, 2012, 83, 1231-1242.	0.8	42
72	The effect of direct and indirect defenses in two wild brassicaceous plant species on a specialist herbivore and its gregarious endoparasitoid. Entomologia Experimentalis Et Applicata, 2008, 128, 99-108.	0.7	40

#	Article	IF	CITATIONS
73	Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivoreâ€induced plant volatiles. Molecular Ecology, 2015, 24, 2886-2899.	2.0	40
74	Intrinsic competition and its effects on the survival and development of three species of endoparasitoid wasps. Entomologia Experimentalis Et Applicata, 2009, 130, 238-248.	0.7	39
75	Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests. Pest Management Science, 2020, 76, 432-443.	1.7	39
76	Foraging efficiency of a parasitoid of a leaf herbivore is influenced by root herbivory on neighbouring plants. Functional Ecology, 2007, 21, 969-974.	1.7	36
77	Behaviour of male and female parasitoids in the field: influence of patch size, host density, and habitat complexity. Ecological Entomology, 2010, 35, 341-351.	1.1	36
78	Nutritional integration between insect hosts and koinobiont parasitoids in an evolutionary framework. Entomologia Experimentalis Et Applicata, 2016, 159, 181-188.	0.7	36
79	Rain downpours affect survival and development of insect herbivores: the specter of climate change?. Ecology, 2019, 100, e02819.	1.5	36
80	Do parasitized caterpillars protect their parasitoids from hyperparasitoids? A test of the â€~usurpation hypothesis'. Animal Behaviour, 2008, 76, 701-708.	0.8	35
81	Nutritional ecology of the interaction between larvae of the gregarious ectoparasitoid, Muscidifurax raptorellus (Hymenoptera: Pteromalidae), and their pupal host, Musca domestica (Diptera: Muscidae). Physiological Entomology, 1998, 23, 113-120.	0.6	34
82	Differential induction of plant chemical defenses by parasitized and unparasitized herbivores: consequences for reciprocal, multitrophic interactions. Oikos, 2016, 125, 1398-1407.	1.2	34
83	Differential host growth regulation by the solitary endoparasitoid, Meteorus pulchricornis in two hosts of greatly differing mass. Journal of Insect Physiology, 2010, 56, 1178-1183.	0.9	33
84	Population-Related Variation in Plant Defense more Strongly Affects Survival of an Herbivore than Its Solitary Parasitoid Wasp. Journal of Chemical Ecology, 2011, 37, 1081-1090.	0.9	33
85	Food plant and herbivore host species affect the outcome of intrinsic competition among parasitoid larvae. Ecological Entomology, 2014, 39, 693-702.	1.1	33
86	Comparing the physiological effects and function of larval feeding in closelyâ€related endoparasitoids (Braconidae: Microgastrinae). Physiological Entomology, 2008, 33, 217-225.	0.6	32
87	Interactions to the fifth trophic level: secondary and tertiary parasitoid wasps show extraordinary efficiency in utilizing host resources. Journal of Animal Ecology, 2009, 78, 686-692.	1.3	32
88	Variation in herbivoreâ€induced plant volatiles corresponds with spatial heterogeneity in the level of parasitoid competition and parasitoid exposure to hyperparasitism. Functional Ecology, 2013, 27, 1107-1116.	1.7	32
89	Intra-specific variation in wild Brassica oleracea for aphid-induced plant responses and consequences for caterpillar–parasitoid interactions. Oecologia, 2014, 174, 853-862.	0.9	32
90	Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology, 2016, 97, 1345-1356.	1.5	32

#	Article	IF	CITATIONS
91	Habitat complexity reduces parasitoid foraging efficiency, but does not prevent orientation towards learned host plant odours. Oecologia, 2015, 179, 353-361.	0.9	31
92	Sexual size and development time dimorphism in a parasitoid wasp: an exception to the rule?. European Journal of Entomology, 2003, 100, 485-492.	1.2	31
93	Combined effects of patch size and plant nutritional quality on local densities of insect herbivores. Basic and Applied Ecology, 2010, 11, 396-405.	1.2	30
94	Conserving host–parasitoid interactions in a warming world. Current Opinion in Insect Science, 2015, 12, 79-85.	2.2	30
95	Nonlinear effects of plant root and shoot jasmonic acid application on the performance of <i>Pieris brassicae</i> and its parasitoid <i>Cotesia glomerata</i> . Functional Ecology, 2009, 23, 496-505.	1.7	29
96	The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits. Frontiers in Plant Science, 2013, 4, 431.	1.7	29
97	Interactions Between a Belowground Herbivore and Primary and Secondary Root Metabolites in Wild Cabbage. Journal of Chemical Ecology, 2015, 41, 696-707.	0.9	29
98	Remarkable similarity in body mass of a secondary hyperparasitoidLysibia nana and its primary parasitoid hostCotesia glomerata emerging from cocoons of comparable size. Archives of Insect Biochemistry and Physiology, 2006, 61, 170-183.	0.6	28
99	Seasonal phenology of interactions involving shortâ€lived annual plants, a multivoltine herbivore and its endoparasitoid wasp. Journal of Animal Ecology, 2014, 83, 234-244.	1.3	28
100	Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica) Tj ETQq0 0 0 rgBT /C	verlock 10	0 Tf 50 382 T 28
101	Intrinsic competition among solitary and gregarious endoparasitoid wasps and the phenomenon of â€resource sharing'. Ecological Entomology, 2012, 37, 65-74.	1.1	27
102	The influence of host quality on progeny and sex allocation in the pupal ectoparasitoid, <i>Muscidifurax raptorellus</i> (Hymenoptera: Pteromalidae). Bulletin of Entomological Research, 1998, 88, 299-304.	0.5	26
103	The roles of ecological fitting, phylogeny and physiological equivalence in understanding realized and fundamental host ranges in endoparasitoid wasps. Journal of Evolutionary Biology, 2012, 25, 2139-2148.	0.8	26
104	Differential effects of climate warming on reproduction and functional responses on insects in the fourth trophic level. Functional Ecology, 2019, 33, 693-702.	1.7	26
105	The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. MicrobiologyOpen, 2020, 9, e00954.	1.2	26
106	A tritrophic approach to the preference–performance hypothesis involving an exotic and a native plant. Biological Invasions, 2013, 15, 2387-2401.	1.2	25
107	An ecogenomic analysis of herbivoreâ€induced plant volatiles in <i><scp>B</scp>rassica juncea</i> . Molecular Ecology, 2013, 22, 6179-6196.	2.0	25
108	Variation in plant defences among populations of a rangeâ€expanding plant: consequences for trophic interactions. New Phytologist, 2014, 204, 989-999.	3.5	25

#	Article	IF	CITATIONS
109	Multi level ecological fitting: indirect life cycles are not a barrier to host switching and invasion. Global Change Biology, 2015, 21, 3210-3218.	4.2	25
110	Development and host utilization in Hyposoter ebeninus (Hymenoptera: Ichneumonidae), a solitary endoparasitoid of Pieris rapae and P. brassicae caterpillars (Lepidoptera: Pieridae). Biological Control, 2010, 53, 312-318.	1.4	24
111	The parasitoid complex associated with the herbivoreHadena bicruris(Lepidoptera: Noctuidae) onSilene latifolia(Caryophyllaceae) in the Netherlands. Journal of Natural History, 2007, 41, 101-123.	0.2	23
112	Lifeâ€history traits in closely related secondary parasitoids sharing the same primary parasitoid host: evolutionary opportunities and constraints. Entomologia Experimentalis Et Applicata, 2009, 132, 155-164.	0.7	23
113	Body Odors of Parasitized Caterpillars Give Away the Presence of Parasitoid Larvae to Their Primary Hyperparasitoid Enemies. Journal of Chemical Ecology, 2014, 40, 986-995.	0.9	22
114	Climate Extremes, Rewilding, and the Role of Microhabitats. One Earth, 2020, 2, 506-509.	3.6	22
115	Biodiversity conservation in climate change driven transient communities. Biodiversity and Conservation, 2021, 30, 2885-2906.	1.2	21
116	Cross-protection experiments with parasitoids in the genus Microplitis (Hymenoptera: Braconidae) suggest a high level of specificity in their associated bracoviruses. Journal of Insect Physiology, 2003, 49, 473-482.	0.9	20
117	The â€~usurpation hypothesis' revisited: dying caterpillar repels attack from a hyperparasitoid wasp. Animal Behaviour, 2011, 81, 1281-1287.	0.8	20
118	Effects of population-related variation in plant primary and secondary metabolites on aboveground and belowground multitrophic interactions. Chemoecology, 2016, 26, 219-233.	0.6	20
119	Gold Open Access Publishing in Mega-Journals: Developing Countries Pay the Price of Western Premium Academic Output. Journal of Scholarly Publishing, 2017, 49, 89-102.	0.3	20
120	Flexible larval development and the timing of destructive feeding by a solitary endoparasitoid: an optimal foraging problem in evolutionary perspective. Ecological Entomology, 1999, 24, 308-315.	1.1	19
121	Male soldier caste larvae are non-aggressive in the polyembryonic wasp Copidosoma floridanum. Biology Letters, 2007, 3, 431-434.	1.0	19
122	Intrinsic competition between two secondary hyperparasitoids results in temporal trophic switch. Oikos, 2011, 120, 226-233.	1.2	19
123	Consequences of constitutive and induced variation in the host's food plant quality for parasitoid larval development. Journal of Insect Physiology, 2012, 58, 367-375.	0.9	19
124	Concurrence in the ability for lipid synthesis between life stages in insects. Royal Society Open Science, 2017, 4, 160815.	1.1	19
125	Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity. Oecologia, 2019, 189, 699-709.	0.9	19
126	Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Molecular Ecology, 2020, 29, 4014-4031.	2.0	19

#	Article	IF	CITATIONS
127	Impacts of belowground herbivory on oviposition decisions in two congeneric butterfly species. Entomologia Experimentalis Et Applicata, 2010, 136, 191-198.	0.7	18
128	Development of a hyperparasitoid wasp in different stages of its primary parasitoid and secondary herbivore hosts. Journal of Insect Physiology, 2012, 58, 1463-1468.	0.9	18
129	Range-Expansion in Processionary Moths and Biological Control. Insects, 2020, 11, 267.	1.0	18
130	Tolerance of Brassica nigra to Pieris brassicae herbivory. Botany, 2008, 86, 641-648.	0.5	17
131	Effects of an invasive plant on the performance of two parasitoids with different host exploitation strategies. Biological Control, 2012, 62, 213-220.	1.4	17
132	Small-scale spatial resource partitioning in a hyperparasitoid community. Arthropod-Plant Interactions, 2014, 8, 393-401.	0.5	17
133	Multi-trait mimicry of ants by a parasitoid wasp. Scientific Reports, 2015, 5, 8043.	1.6	17
134	Consequences of resource competition for sex allocation and discriminative behaviors in a hyperparasitoid wasp. Behavioral Ecology and Sociobiology, 2014, 68, 105-113.	0.6	16
135	Age-dependent clutch size in a koinobiont parasitoid. Ecological Entomology, 2005, 30, 17-27.	1.1	15
136	Contrasting patterns of herbivore and predator pressure on invasive and native plants. Basic and Applied Ecology, 2012, 13, 725-734.	1.2	15
137	Reciprocal influences and costs of parasitism on the development of <i>Corcyra cephalonica</i> and its endoparasitoid <i>Venturia canescens</i> . Entomologia Experimentalis Et Applicata, 1996, 81, 39-45.	0.7	14
138	Effects of plant diversity and structural complexity on parasitoid behaviour in a field experiment. Ecological Entomology, 2015, 40, 748-758.	1.1	14
139	Direct and indirect genetic effects in life-history traits of flour beetles (<i>Tribolium castaneum</i>). Evolution; International Journal of Organic Evolution, 2016, 70, 207-217.	1.1	14
140	Honeydew composition and its effect on lifeâ€history parameters of hyperparasitoids. Ecological Entomology, 2020, 45, 278-289.	1.1	14
141	Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp. PLoS ONE, 2016, 11, e0149539.	1.1	14
142	The effect of host developmental stage at parasitism on sexâ€related size differentiation in a larval endoparasitoid. Ecological Entomology, 2009, 34, 755-762.	1.1	13
143	Development of Mamestra brassicae and its solitary endoparasitoid Microplitis mediator on two populations of the invasive weed Bunias orientalis. Population Ecology, 2011, 53, 587-596.	0.7	13
144	Chemical Defenses (Glucosinolates) of Native and Invasive Populations of the Range Expanding Invasive Plant Rorippa austriaca. Journal of Chemical Ecology, 2014, 40, 363-370.	0.9	13

#	Article	IF	CITATIONS
145	Host preference and offspring performance are linked in three congeneric hyperparasitoid species. Ecological Entomology, 2015, 40, 114-122.	1.1	13
146	Honey and honey-based sugars partially affect reproductive trade-offs in parasitoids exhibiting different life-history and reproductive strategies. Journal of Insect Physiology, 2017, 98, 134-140.	0.9	13
147	The mechanism of the emergence of Cotesia kariyai (Hymenoptera: Braconidae) larvae from the host. European Journal of Entomology, 2006, 103, 355-360.	1.2	13
148	Development of Hyperparasitoid WaspLysibia nana(Hymenoptera: Ichneumonidae) in a Multitrophic Framework. Environmental Entomology, 2004, 33, 1488-1496.	0.7	12
149	Convergence and Divergence in Direct and Indirect Life-History Traits of Closely Related Parasitoids (Braconidae: Microgastrinae). Evolutionary Biology, 2014, 41, 134-144.	0.5	12
150	Trade-offs between developmental parameters of two endoparasitoids developing in different instars of the same host species. Biological Control, 2014, 74, 52-58.	1.4	12
151	Oviposition Preference for Young Plants by the Large Cabbage Butterfly (Pieris brassicae) Does not Strongly Correlate with Caterpillar Performance. Journal of Chemical Ecology, 2017, 43, 617-629.	0.9	12
152	Responses of insect herbivores and their food plants to wind exposure and the importance of predation risk. Journal of Animal Ecology, 2018, 87, 1046-1057.	1.3	12
153	Comparing and contrasting life history and development strategies in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: Ichneumonidae). Applied Entomology and Zoology, 2005, 40, 309-316.	0.6	11
154	Development of the herbivore Pieris rapae and its endoparasitoid Cotesia rubecula on crucifers of field edges. Journal of Applied Entomology, 2006, 130, 465-470.	0.8	11
155	Plants as green phone. Plant Signaling and Behavior, 2008, 3, 519-520.	1.2	11
156	Inter- and intra-specific host discrimination in gregarious and solitary endoparasitoid wasps. BioControl, 2013, 58, 745-754.	0.9	11
157	Short-term seasonal habitat facilitation mediated by an insect herbivore. Basic and Applied Ecology, 2016, 17, 447-454.	1.2	11
158	Effects of plant-mediated differences in host quality on the development of two related endoparasitoids with different host-utilization strategies. Journal of Insect Physiology, 2018, 107, 110-115.	0.9	11
159	Generalism in Nature…The Great Misnomer: Aphids and Wasp Parasitoids as Examples. Insects, 2019, 10, 314.	1.0	11
160	Effects of elevated CO ₂ and temperature on survival and wing dimorphism of two species of rice planthoppers (Hemiptera: Delphacidae) under interaction. Pest Management Science, 2020, 76, 2087-2094.	1.7	11
161	Effect of belowground herbivory on parasitoid associative learning of plant odours. Oikos, 2013, 122, 1094-1100.	1.2	10
162	Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey. Die Naturwissenschaften, 2014, 101, 707-714.	0.6	10

#	Article	IF	CITATIONS
163	Development of two related endoparasitoids in larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BioControl, 2015, 60, 149-155.	0.9	10
164	Integrating more biological and ecological realism into studies of multitrophic interactions. Ecological Entomology, 2015, 40, 349-352.	1.1	10
165	Divergent life history strategies in congeneric hyperparasitoids. Evolutionary Ecology, 2016, 30, 535-549.	0.5	10
166	Antagonistic interactions between above- and belowground biota reduce their negative effects on a tree species. Plant and Soil, 2020, 454, 379-393.	1.8	10
167	Differing Host Exploitation Efficiencies in Two Hyperparasitoids: When is a †Match Made in Heaven'?. Journal of Insect Behavior, 2011, 24, 282-292.	0.4	9
168	Differing Success of Defense Strategies in Two Parasitoid Wasps in Protecting their Pupae Against a Secondary Hyperparasitoid. Annals of the Entomological Society of America, 2011, 104, 1005-1011.	1.3	9
169	Performance of secondary parasitoids on chemically defended and undefended hosts. Basic and Applied Ecology, 2012, 13, 241-249.	1.2	9
170	Potential Host Range of the Larval Endoparasitoid <i>Cotesia vestalis</i> (<i>=plutellae</i>) (Hymenoptera: Braconidae). International Journal of Insect Science, 2017, 9, 117954331771562.	1.7	8
171	Reproduction and Offspring Sex Ratios Differ Markedly among Closely Related Hyperparasitoids Living in the Same Microhabitats. Journal of Insect Behavior, 2019, 32, 243-251.	0.4	8
172	Long-term effects ofÂsowing high orÂlow diverse seed mixtures onÂplant andÂgastropod diversity. Acta Oecologica, 2006, 30, 173-181.	0.5	7
173	Influence of nutrient deficiency caused by host developmental arrest on the growth and development of a koinobiont parasitoid. Journal of Insect Physiology, 2006, 52, 1105-1112.	0.9	7
174	A bodyguard or a tastier meal? Dying caterpillar indirectly protects parasitoid cocoons by offering alternate prey to a generalist predator. Entomologia Experimentalis Et Applicata, 2013, 149, 219-228.	0.7	7
175	Desiccation and cold storage of Galleria mellonella cadavers and effects on in vivo production of Steinernema carpocapsae. Pest Management Science, 2014, 70, 895-904.	1.7	7
176	WASPâ€ASSOCIATED FACTORS ACT IN INTERSPECIES COMPETITION DURING MULTIPARASITISM. Archives of Insect Biochemistry and Physiology, 2016, 92, 87-107.	0.6	7
177	Simulated heatwave conditions associated with global warming affect development and competition between hyperparasitoids. Oikos, 2019, 128, 1783-1792.	1.2	7
178	Ecological dissociation and re-association with a superior competitor alters host selection behavior in a parasitoid wasp. Oecologia, 2019, 191, 261-270.	0.9	7
179	Varying degree of physiological integration among host instars and their endoparasitoid affects stressâ€induced mortality. Entomologia Experimentalis Et Applicata, 2019, 167, 424-432.	0.7	7
180	Effects of soil biota on growth, resistance and tolerance to herbivory in Triadica sebifera plants. Geoderma, 2021, 402, 115191.	2.3	7

#	Article	IF	CITATIONS
181	Intraspecific Competition Between Adult Females of the Hyperparasitoid <i>Trichomalopsis apanteloctena</i> (Hymenoptera: Chelonidae), for Domination of <i>Cotesia kariyai</i> (Hymenoptera:) Tj ETQq1	1.0 .7843	1 4 rgBT /O
182	Root and shoot jasmonic acid induction differently affects the foraging behavior of Cotesia glomerata under semi-field conditions. BioControl, 2012, 57, 387-395.	0.9	6
183	Reciprocal interactions between native and introduced populations of common milkweed, Asclepias syriaca, and the specialist aphid, Aphis nerii. Basic and Applied Ecology, 2014, 15, 444-452.	1.2	6
184	Convergent development of a parasitoid wasp on three host species with differing mass and growth potential. Entomologia Experimentalis Et Applicata, 2015, 154, 15-22.	0.7	6
185	Integrating Insect Life History and Food Plant Phenology: Flexible Maternal Choice Is Adaptive. International Journal of Molecular Sciences, 2016, 17, 1263.	1.8	6
186	Spatial and temporal diversity in hyperparasitoid communities of <i>Cotesia glomerata</i> on garlic mustard, <scp><i>Alliaria petiolata</i></scp> . Ecological Entomology, 2019, 44, 357-366.	1.1	6
187	Effects of temperature and food source on reproduction and longevity of aphid hyperparasitoids of the genera Dendrocerus and Asaphes. BioControl, 2019, 64, 277-290.	0.9	6
188	Development of a solitary koinobiont hyperparasitoid in different instars of its primary and secondary hosts. Journal of Insect Physiology, 2016, 90, 36-42.	0.9	5
189	Comparing and contrasting life history variation in four aphid hyperparasitoids. Ecological Entomology, 2017, 42, 325-335.	1.1	5
190	Ant-like Traits in Wingless Parasitoids Repel Attack from Wolf Spiders. Journal of Chemical Ecology, 2018, 44, 894-904.	0.9	5
191	Prey availability affects developmental trade-offs and sexual-size dimorphism in the false widow spider, Steatoda grossa. Journal of Insect Physiology, 2021, 136, 104267.	0.9	5
192	Effect of host ocoon mass on adult size in the secondary hyperparasitoid wasp,â€, <i>Pteromalus semotus</i> â€,(Hymenoptera: Pteromalidae). Insect Science, 2012, 19, 383-390.	1.5	4
193	Climate Change, Range Shifts and Multitrophic Interactions. , 0, , .		4
194	Intrinsic competition between primary hyperparasitoids of the solitary endoparasitoid <i><scp>C</scp>otesia rubecula</i> . Ecological Entomology, 2016, 41, 292-300.	1.1	4
195	Development and oviposition strategies in two congeneric gregarious larval-pupal endoparasitoids of the seven-spot ladybird, Coccinella septempunctata. Biological Control, 2021, 163, 104756.	1.4	4
196	Effects of Light Quality on Colonization of Tomato Roots by AMF and Implications for Growth and Defense. Plants, 2022, 11, 861.	1.6	4
197	Cotesia kariyai larvae need an anchor to emerge from the hostPseudaletia separata. Archives of Insect Biochemistry and Physiology, 2007, 66, 1-8.	0.6	3
198	Black and Garlic Mustard Plants Are Highly Suitable for the Development of Two Native Pierid Butterflies. Environmental Entomology, 2016, 45, 671-676.	0.7	3

#	Article	IF	CITATIONS
199	Dietary sugars and proline influence biological parameters of adult Trissolcus grandis, an egg parasitoid of Sunn pest, Eurygaster integriceps. Biological Control, 2016, 96, 21-27.	1.4	3
200	Population- and Species-Based Variation of Webworm–Parasitoid Interactions in Hogweeds (Heracelum spp.) in the Netherlands. Environmental Entomology, 2020, 49, 924-930.	0.7	3
201	The Tarnished Silver Lining of Extreme Climatic Events. Trends in Ecology and Evolution, 2021, 36, 384-385.	4.2	3
	Brood attending by females of the hyperparasitoid Trichomalopsis apanteloctena (Hymenoptera:) Tj ETQq0 0 0 rg	gBT /Overl	ock 10 Tf 50
202	effects on reproduction, development and survival. European Journal of Entomology, 2008, 105, 855-862.	1.2	3
203	Invasive moth facilitates use of a native food plant by other native and invasive arthropods. Ecological Research, 2019, 34, 659-666.	0.7	2
204	Variation in Performance and Resistance to Parasitism of Plutella xylostella Populations. Insects, 2019, 10, 293.	1.0	2
205	Exogenous application of plant hormones in the field alters aboveground plant–insect responses and belowground nutrient availability, but does not lead to differences in plant–soil feedbacks. Arthropod-Plant Interactions, 2020, 14, 559-570.	0.5	2
206	Evaluating the effects of the invasive cane toad (Rhinella marina) on island biodiversity, focusing on the Philippines. Pacific Conservation Biology, 2021, , .	0.5	2
207	Plant quantity affects development and reproduction of a gregarious butterfly more than plant quality. Entomologia Experimentalis Et Applicata, 0, , .	0.7	2
208	All mycorrhizas are not equal. Trends in Ecology and Evolution, 2001, 16, 672-673.	4.2	1
209	Presence of the fire ant Solenopsis invicta (Westwood) (Hymenoptera: Formicidae) stimulates burrowing behavior by larvae of the sandfly Lutzomyia longipalpis (Lutz & Neiva) (Diptera:) Tj ETQq1 1 0.784314	rg®tī5/Ove	rlack 10 Tf
210	Finish line plant–insect interactions mediated by insect feeding mode and plant interference: a case study of <i>Brassica</i> interactions with diamondback moth and turnip aphid. Insect Science, 2018, 25, 690-702.	1.5	1
211	The cabbage moth or the sorrel moth (Lepidoptera: Noctuidae)?. European Journal of Entomology, 0, 113, 320-324.	1.2	1
212	Preparing a Paper for Publication: An Action Plan for Rapid Composition and Completion. Annales Zoologici Fennici, 2009, 46, 158-164.	0.2	0
213	Editorial overview: Insect conservation: A wide array of threats to both supporting and provisioning services. Current Opinion in Insect Science, 2015, 12, viii-x.	2.2	0