Gerald J Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4420042/publications.pdf Version: 2024-02-01

		34105	31849
330	11,821	52	101
papers	citations	h-index	g-index
337	337	337	8925
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO ₂ semiconductor surfaces. Chemical Society Reviews, 2009, 38, 115-164.	38.1	1,064
2	Electron Transport in Porous Nanocrystalline TiO2Photoelectrochemical Cells. The Journal of Physical Chemistry, 1996, 100, 17021-17027.	2.9	394
3	Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. Journal of Physical Chemistry B, 2001, 105, 6867-6873.	2.6	356
4	Enhanced Spectral Sensitivity from Ruthenium(II) Polypyridyl Based Photovoltaic Devices. Inorganic Chemistry, 1994, 33, 5741-5749.	4.0	351
5	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	13.7	317
6	Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2. Langmuir, 1999, 15, 7047-7054.	3.5	315
7	An Acetylacetonate-Based Semiconductorâ^'Sensitizer Linkage. Inorganic Chemistry, 1996, 35, 5319-5324.	4.0	307
8	Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices. Inorganic Chemistry, 2001, 40, 6073-6079.	4.0	303
9	Biological applications of high aspect ratio nanoparticles. Journal of Materials Chemistry, 2004, 14, 517.	6.7	258
10	Electron Injection, Recombination, and Halide Oxidation Dynamics at Dye-Sensitized Metal Oxide Interfaces. Journal of Physical Chemistry A, 2000, 104, 4256-4262.	2.5	251
11	Dye-sensitized solar cells strike back. Chemical Society Reviews, 2021, 50, 12450-12550.	38.1	240
12	Molecular Approaches to Solar Energy Conversion with Coordination Compounds Anchored to Semiconductor Surfaces. Inorganic Chemistry, 2005, 44, 6852-6864.	4.0	232
13	ELECTRON INJECTION AT DYE-SENSITIZED SEMICONDUCTOR ELECTRODES. Annual Review of Physical Chemistry, 2005, 56, 119-156.	10.8	224
14	Cation effects in nanocrystalline solar cells. Coordination Chemistry Reviews, 2004, 248, 1391-1406.	18.8	205
15	Proton-Controlled Electron Injection from Molecular Excited States to the Empty States in Nanocrystalline TiO2. Langmuir, 2001, 17, 6720-6728.	3.5	179
16	Stark Effects after Excited-State Interfacial Electron Transfer at Sensitized TiO ₂ Nanocrystallites. Journal of the American Chemical Society, 2010, 132, 6696-6709.	13.7	171
17	Electrical and optical properties of porous nanocrystalline TiO2 films. The Journal of Physical Chemistry, 1995, 99, 11974-11980.	2.9	165
18	Long-Lived Photoinduced Charge Separation across Nanocrystalline TiO2 Interfaces. Journal of the American Chemical Society, 1995, 117, 11815-11816.	13.7	163

#	Article	IF	CITATIONS
19	Light-Induced Charge Separation across Ru(II)-Modified Nanocrystalline TiO2Interfaces with Phenothiazine Donors. Journal of Physical Chemistry B, 1997, 101, 2591-2597.	2.6	149
20	Visible Light Generation of Iodine Atoms and Iâ´'I Bonds: Sensitized I ^{â´'} Oxidation and I ₃ ^{â^'} Photodissociation. Journal of the American Chemical Society, 2009, 131, 16206-16214.	13.7	143
21	Iodide Chemistry in Dye-Sensitized Solar Cells: Making and Breaking Iâ^I Bonds for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2010, 1, 3132-3140.	4.6	143
22	Photodriven Electron and Energy Transfer from Copper Phenanthroline Excited States. Inorganic Chemistry, 1996, 35, 6406-6412.	4.0	142
23	Atomic Level Resolution of Dye Regeneration in the Dye-Sensitized Solar Cell. Journal of the American Chemical Society, 2013, 135, 1961-1971.	13.7	133
24	Halide Photoredox Chemistry. Chemical Reviews, 2019, 119, 4628-4683.	47.7	127
25	Charge-Transfer Studies of Iron Cyano Compounds Bound to Nanocrystalline TiO2Surfaces. Inorganic Chemistry, 2002, 41, 1254-1262.	4.0	113
26	Theoretical Solar-to-Electrical Energy-Conversion Efficiencies of Peryleneâ^'Porphyrin Light-Harvesting Arraysâ€. Journal of Physical Chemistry B, 2006, 110, 25430-25440.	2.6	112
27	Diffusion-Limited Interfacial Electron Transfer with Large Apparent Driving Forces. Journal of Physical Chemistry B, 1999, 103, 7671-7675.	2.6	111
28	Enantioselective Intermolecular Excited-State Photoreactions Using a Chiral Ir Triplet Sensitizer: Separating Association from Energy Transfer in Asymmetric Photocatalysis. Journal of the American Chemical Society, 2019, 141, 13625-13634.	13.7	111
29	Stepwise Charge Separation in Heterotriads. Binuclear Ru(II)â^'Rh(III) Complexes on Nanocrystalline Titanium Dioxide. Journal of the American Chemical Society, 2000, 122, 2840-2849.	13.7	104
30	Excited state processes at sensitized nanocrystalline thin film semiconductor interfaces. Coordination Chemistry Reviews, 2001, 211, 295-315.	18.8	101
31	Kinetic pathway for interfacial electron transfer from a semiconductor to a molecule. Nature Chemistry, 2016, 8, 853-859.	13.6	96
32	The 2010 Millennium Technology Grand Prize: Dye-Sensitized Solar Cells. ACS Nano, 2010, 4, 4337-4343.	14.6	91
33	Dual Pathways for TiO2Sensitization by Na2[Fe(bpy)(CN)4]. Inorganic Chemistry, 2000, 39, 3738-3739.	4.0	90
34	Influence of Surface Protonation on the Sensitization Efficiency of Porphyrin-Derivatized TiO2. Journal of Physical Chemistry B, 2004, 108, 11680-11688.	2.6	89
35	Disentangling the Physical Processes Responsible for the Kinetic Complexity in Interfacial Electron Transfer of Excited Ru(II) Polypyridyl Dyes on TiO ₂ . Journal of the American Chemical Society, 2016, 138, 4426-4438.	13.7	84
36	Non-Nernstian Two-Electron Transfer Photocatalysis at Metalloporphyrin–TiO ₂ Interfaces. Journal of the American Chemical Society, 2011, 133, 16572-16580.	13.7	79

#	Article	IF	CITATIONS
37	Toward Exceeding the Shockleyâ^'Queisser Limit:  Photoinduced Interfacial Charge Transfer Processes that Store Energy in Excess of the Equilibrated Excited State. Journal of the American Chemical Society, 2006, 128, 8234-8245.	13.7	75
38	Excited-State Electron Transfer from Ruthenium-Polypyridyl Compounds to Anatase TiO ₂ Nanocrystallites: Evidence for a Stark Effect. Journal of Physical Chemistry B, 2010, 114, 14596-14604.	2.6	68
39	Dye-Sensitized Hydrobromic Acid Splitting for Hydrogen Solar Fuel Production. Journal of the American Chemical Society, 2017, 139, 15612-15615.	13.7	67
40	Insights into Dye-Sensitization of Planar TiO2:Â Evidence for Involvement of a Protonated Surface State. Journal of Physical Chemistry B, 2003, 107, 10971-10973.	2.6	65
41	Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages. Journal of the American Chemical Society, 2016, 138, 10406-10409.	13.7	65
42	Sensitization of Nanocrystalline TiO2Initiated by Reductive Quenching of Molecular Excited States. Langmuir, 1999, 15, 650-653.	3.5	64
43	Evidence for Iodine Atoms as Intermediates in the Dye Sensitized Formation of Iâ^'I Bonds. Journal of the American Chemical Society, 2008, 130, 17252-17253.	13.7	63
44	Accessing Photoredox Transformations with an Iron(III) Photosensitizer and Green Light. Journal of the American Chemical Society, 2021, 143, 15661-15673.	13.7	62
45	Characterization of Photoinduced Self-Exchange Reactions at Molecule–Semiconductor Interfaces by Transient Polarization Spectroscopy: Lateral Intermolecular Energy and Hole Transfer across Sensitized TiO ₂ Thin Films. Journal of the American Chemical Society, 2011, 133, 15384-15396.	13.7	61
46	Excited-State Deactivation of Ruthenium(II) Polypyridyl Chromophores Bound to Nanocrystalline TiO2Mesoporous Thin Films. Langmuir, 1999, 15, 731-737.	3.5	58
47	Thin Film Actinometers for Transient Absorption Spectroscopy:Â Applications to Dye-Sensitized Solar Cells. Langmuir, 2003, 19, 8389-8394.	3.5	58
48	Static and Dynamic Quenching of Ru(II) Polypyridyl Excited States by Iodide. Inorganic Chemistry, 2006, 45, 362-369.	4.0	58
49	Slow Cation Transfer Follows Sensitizer Regeneration at Anatase TiO ₂ Interfaces. Journal of the American Chemical Society, 2008, 130, 11586-11587.	13.7	55
50	Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s). Journal of the American Chemical Society, 2016, 138, 3891-3903.	13.7	55
51	Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II. Journal of the American Chemical Society, 2019, 141, 7926-7933.	13.7	55
52	Direct Observation of Photodriven Intermolecular Hole Transfer across TiO ₂ Nanocrystallites: Lateral Self-Exchange Reactions and Catalyst Oxidation. Journal of the American Chemical Society, 2010, 132, 9283-9285.	13.7	54
53	Intramolecular and Lateral Intermolecular Hole Transfer at the Sensitized TiO ₂ Interface. Journal of the American Chemical Society, 2014, 136, 1034-1046.	13.7	54
54	Multi-Electron Transfer from Heme-Functionalized Nanocrystalline TiO2to Organohalide Pollutants. Journal of the American Chemical Society, 2006, 128, 712-713.	13.7	52

#	Article	IF	CITATIONS
55	Distance Dependent Electron Transfer at TiO ₂ Interfaces Sensitized with Phenylene Ethynylene Bridged Ru ^{II} –Isothiocyanate Compounds. Journal of the American Chemical Society, 2013, 135, 8331-8341.	13.7	52
56	Water Photo-oxidation Initiated by Surface-Bound Organic Chromophores. Journal of the American Chemical Society, 2017, 139, 16248-16255.	13.7	52
57	Molecular Rectification by a Bimetallic Ruâ^'Os Compound Anchored to Nanocrystalline TiO2. Inorganic Chemistry, 2000, 39, 1342-1343.	4.0	51
58	TiO ₂ Surface Functionalization to Control the Density of States. Journal of Physical Chemistry C, 2008, 112, 18224-18231.	3.1	51
59	Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers. Journal of Chemical Education, 1997, 74, 652.	2.3	50
60	Long-Lived Charge-Separated States Following Light Excitation of Cu(I) Donorâ^'Acceptor Compounds. Journal of the American Chemical Society, 1997, 119, 12004-12005.	13.7	49
61	Remote and Adjacent Excited-State Electron Transfer at TiO2Interfaces Sensitized to Visible Light with Ru(II) Compounds. Inorganic Chemistry, 2005, 44, 9305-9313.	4.0	49
62	Improved Visible Light Absorption of Potent Iridium(III) Photo-oxidants for Excited-State Electron Transfer Chemistry. Journal of the American Chemical Society, 2020, 142, 2732-2737.	13.7	48
63	Competitive Intermolecular Energy Transfer and Electron Injection at Sensitized Semiconductor Interfaces. Journal of the American Chemical Society, 1999, 121, 5577-5578.	13.7	47
64	Temperature-Dependent Electron Injection from Ru(II) Polypyridyl Compounds with Low Lying Ligand Field States to Titanium Dioxide. Langmuir, 2000, 16, 4662-4671.	3.5	47
65	Reductive Electron Transfer Quenching of MLCT Excited States Bound To Nanostructured Metal Oxide Thin Films. Journal of Physical Chemistry B, 2003, 107, 245-254.	2.6	47
66	Chloride Ion-Pairing with Ru(II) Polypyridyl Compounds in Dichloromethane. Journal of Physical Chemistry A, 2013, 117, 8883-8894.	2.5	44
67	Sensitization of Nanocrystalline TiO ₂ by Re(I) Polypyridyl Compounds*. Zeitschrift Fur Physikalische Chemie, 1999, 212, 39-44.	2.8	43
68	Luminescence of charge transfer sensitizers anchored to metal oxide nanoparticles. Journal of Luminescence, 1996, 70, 468-478.	3.1	42
69	Correlation Between Charge Recombination and Lateral Hole-Hopping Kinetics in a Series of <i>cis</i> -Ru(phen′)(dcb)(NCS) ₂ Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 33446-33454.	8.0	41
70	Ferrous Hemin Oxidation by Organic Halides at Nanocrystalline TiO2 Interfaces. Nano Letters, 2003, 3, 1151-1153.	9.1	40
71	Evidence for Static Quenching of MLCT Excited States by lodide. Inorganic Chemistry, 2005, 44, 3383-3385.	4.0	40
72	Intramolecular Hole Transfer at Sensitized TiO ₂ Interfaces. Journal of the American Chemical Society, 2012, 134, 8352-8355.	13.7	40

#	Article	IF	CITATIONS
73	Evidence for Interfacial Halogen Bonding. Angewandte Chemie - International Edition, 2016, 55, 5956-5960.	13.8	40
74	Electron Transfer Reorganization Energies in the Electrode–Electrolyte Double Layer. Journal of the American Chemical Society, 2020, 142, 674-679.	13.7	40
75	Visible light generation of l–I bonds by Ru-tris(diimine) excited states. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15628-15633.	7.1	39
76	Ligand-Localized Electron Trapping at Sensitized Semiconductor Interfaces. Journal of the American Chemical Society, 2002, 124, 9690-9691.	13.7	38
77	Multielectron Transfer at Heme-Functionalized Nanocrystalline TiO2:Â Reductive Dechlorination of DDT and CCl4Forms Stable Carbene Compounds. Nano Letters, 2006, 6, 1284-1286.	9.1	38
78	Electric Fields and Charge Screening in Dye Sensitized Mesoporous Nanocrystalline TiO ₂ Thin Films. Journal of Physical Chemistry C, 2014, 118, 16976-16986.	3.1	38
79	lodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH ₃ CN. Inorganic Chemistry, 2015, 54, 4512-4519.	4.0	38
80	Redox Active Ion-Paired Excited States Undergo Dynamic Electron Transfer. Journal of the American Chemical Society, 2016, 138, 16815-16826.	13.7	38
81	Introduction to Electron Transfer: Theoretical Foundations and Pedagogical Examples. Journal of Chemical Education, 2019, 96, 2450-2466.	2.3	38
82	Decreased Interfacial Charge Recombination Rate Constants with N3-Type Sensitizers. Journal of Physical Chemistry Letters, 2010, 1, 1725-1728.	4.6	37
83	Excited-State Decay Pathways of Tris(bidentate) Cyclometalated Ruthenium(II) Compounds. Inorganic Chemistry, 2017, 56, 13579-13592.	4.0	36
84	Long-Wavelength Sensitization of TiO2by Ruthenium Diimine Compounds with Low-Lying π* Orbitals. Langmuir, 2011, 27, 14522-14531.	3.5	35
85	Lateral Intermolecular Self-Exchange Reactions for Hole and Energy Transport on Mesoporous Metal Oxide Thin Films. Langmuir, 2015, 31, 11164-11178.	3.5	35
86	Chloride Oxidation by Ruthenium Excited-States in Solution. Journal of the American Chemical Society, 2017, 139, 12903-12906.	13.7	35
87	Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell. Nature Communications, 2017, 8, 1761.	12.8	35
88	DNA dynamics observed with long lifetime metal-ligand complexes. Biospectroscopy, 1995, 1, 163-168.	0.6	34
89	Reduction of I ₂ /I ₃ ^{â^'} by Titanium Dioxide. Journal of Physical Chemistry C, 2009, 113, 18444-18447.	3.1	34
90	Surface Grafting of Ru(II) Diazonium-Based Sensitizers on Metal Oxides Enhances Alkaline Stability for Solar Energy Conversion. ACS Applied Materials & Interfaces, 2018, 10, 3121-3132.	8.0	34

#	Article	IF	CITATIONS
91	Charge-Screening Kinetics at Sensitized TiO ₂ Interfaces. Journal of Physical Chemistry Letters, 2013, 4, 2817-2821.	4.6	33
92	Excited-State Relaxation of Ruthenium Polypyridyl Compounds Relevant to Dye-Sensitized Solar Cells. Inorganic Chemistry, 2013, 52, 6839-6848.	4.0	32
93	Electric Fields Control TiO ₂ (e [–]) + I ₃ [–] → Charge Recombination in Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 3265-3268.	4.6	31
94	Intermolecular Energy Transfer across Nanocrystalline Semiconductor Surfaces. Journal of Physical Chemistry B, 2006, 110, 2598-2605.	2.6	30
95	Visible Light Driven Nanosecond Bromide Oxidation by a Ru Complex with Subsequent Br–Br Bond Formation. Journal of the American Chemical Society, 2015, 137, 8321-8323.	13.7	30
96	Evidence that Δ <i>S</i> [‡] Controls Interfacial Electron Transfer Dynamics from Anatase TiO ₂ to Molecular Acceptors. Journal of the American Chemical Society, 2018, 140, 3019-3029.	13.7	30
97	Dye-sensitized electron transfer from TiO ₂ to oxidized triphenylamines that follows first-order kinetics. Chemical Science, 2018, 9, 940-949.	7.4	30
98	Photochemical Organic Oxidations and Dechlorinations with a μ-Oxo Bridged Heme/Non-Heme Diiron Complex. Inorganic Chemistry, 2004, 43, 8272-8281.	4.0	29
99	Panchromatic Light Harvesting and Hot Electron Injection by Ru(II) Dipyrrinates on a TiO ₂ Surface. Journal of Physical Chemistry C, 2013, 117, 17399-17411.	3.1	29
100	Ostwald Isolation to Determine the Reaction Order for TiO ₂ (e [–]) S ⁺ → TiO ₂ S Charge Recombination at Sensitized TiO ₂ Interfaces. Journal of Physical Chemistry C, 2014, 118, 7886-7893.	3.1	29
101	Kinetic Evidence That the Solvent Barrier for Electron Transfer Is Absent in the Electric Double Layer. Journal of the American Chemical Society, 2020, 142, 14940-14946.	13.7	29
102	A Distance Dependence to Lateral Self-Exchange across Nanocrystalline TiO ₂ . A Comparative Study of Three Homologous Ru ^{III/II} Polypyridyl Compounds. Journal of Physical Chemistry C, 2016, 120, 14226-14235.	3.1	28
103	A High-Valent Metal-Oxo Species Produced by Photoinduced One-Electron, Two-Proton Transfer Reactivity. Inorganic Chemistry, 2018, 57, 486-494.	4.0	28
104	Visible Light Driven Bromide Oxidation and Ligand Substitution Photochemistry of a Ru Diimine Complex. Journal of the American Chemical Society, 2018, 140, 5447-5456.	13.7	28
105	Kinetics teach that electronic coupling lowers the free-energy change that accompanies electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7248-7253.	7.1	28
106	Triiodide Quenching of Ruthenium MLCT Excited State in Solution and on TiO2 Surfaces:  An Alternate Pathway for Charge Recombination. Inorganic Chemistry, 2006, 45, 4728-4734.	4.0	27
107	Optical Intramolecular Electron Transfer in Opposite Directions through the Same Bridge That Follows Different Pathways. Journal of the American Chemical Society, 2018, 140, 7176-7186.	13.7	27
108	Photodriven Spin Change of Fe(II) Benzimidazole Compounds Anchored to Nanocrystalline TiO ₂ Thin Films. Langmuir, 2009, 25, 13641-13652.	3.5	26

#	Article	IF	CITATIONS
109	Rapid Static Sensitizer Regeneration Enabled by Ion Pairing. Inorganic Chemistry, 2017, 56, 7324-7327.	4.0	26
110	Bromide Photo-oxidation Sensitized to Visible Light in Consecutive Ion Pairs. Journal of the American Chemical Society, 2017, 139, 14983-14991.	13.7	26
111	Flash-Quench Technique Employed To Study the One-Electron Reduction of Triiodide in Acetonitrile: Evidence for a Diiodide Reaction Product. Inorganic Chemistry, 2010, 49, 10223-10225.	4.0	25
112	Phantom Electrons in Mesoporous Nanocrystalline SnO ₂ Thin Films with Cation-Dependent Reduction Onsets. Chemistry of Materials, 2017, 29, 3919-3927.	6.7	25
113	Optimization of Photocatalyst Excited- and Ground-State Reduction Potentials for Dye-Sensitized HBr Splitting. ACS Applied Materials & Interfaces, 2018, 10, 31312-31323.	8.0	25
114	Evidence for an Electronic State at the Interface between the SnO2 Core and the TiO2 Shell in Mesoporous SnO2/TiO2 Thin Films. ACS Applied Energy Materials, 2018, 1, 859-867.	5.1	24
115	Efficiency Considerations for SnO ₂ -Based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 23923-23930.	8.0	24
116	Trisâ€Heteroleptic Ruthenium–Dipyrrinate Chromophores in a Dye‧ensitized Solar Cell. Chemistry - A European Journal, 2015, 21, 2173-2181.	3.3	23
117	Direct photoactivation of a nickel-based, water-reduction photocathode by a highly conjugated supramolecular chromophore. Energy and Environmental Science, 2018, 11, 447-455.	30.8	23
118	Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. Journal of the American Chemical Society, 2019, 141, 9758-9763.	13.7	23
119	A donor-chromophore-catalyst assembly for solar CO ₂ reduction. Chemical Science, 2019, 10, 4436-4444.	7.4	23
120	Charge Recombination to Oxidized Iodide in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 20316-20325.	3.1	22
121	Di- and Tri-iodide Reactivity at Illuminated Titanium Dioxide Interfaces. Journal of Physical Chemistry C, 2011, 115, 6156-6161.	3.1	22
122	Cation-Dependent Charge Recombination to Organic Mediators in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 21599-21604.	3.1	22
123	Self-Assembled Chromophore–Catalyst Bilayer for Water Oxidation in a Dye-Sensitized Photoelectrosynthesis Cell. Journal of Physical Chemistry C, 2019, 123, 30039-30045.	3.1	22
124	Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O ₂ Ejection and Formation of Mixed-Valent Cu ^I Cu ^{II} –Superoxide Intermediates. Journal of the American Chemical Society, 2015, 137, 15865-15874.	13.7	21
125	Iodide Photoredox and Bond Formation Chemistry. Accounts of Chemical Research, 2019, 52, 170-179.	15.6	21
126	Perspectives on Dye Sensitization of Nanocrystalline Mesoporous Thin Films. Journal of the American Chemical Society, 2020, 142, 16099-16116.	13.7	21

#	Article	IF	CITATIONS
127	A Nuclear Isotope Effect for Interfacial Electron Transfer:Â Excited-State Electron Injection from Ru Ammine Compounds to Nanocrystalline TiO2. Journal of the American Chemical Society, 2005, 127, 824-825.	13.7	20
128	Direct Spectroscopic Evidence for Constituent Heteroatoms Enhancing Charge Recombination at a TiO ₂ â^'Ruthenium Dye Interface. Journal of Physical Chemistry C, 2014, 118, 17079-17089.	3.1	20
129	Activation Energies for Electron Transfer from TiO ₂ to Oxidized Dyes: A Surface Coverage Dependence Correlated with Lateral Hole Hopping. ACS Energy Letters, 2017, 2, 2402-2407.	17.4	20
130	Dynamic Quenching of Porous Silicon Excited States. Chemistry of Materials, 1996, 8, 2686-2692.	6.7	19
131	Influence of ion pairing on the oxidation of iodide by MLCT excited states. Dalton Transactions, 2011, 40, 3830.	3.3	19
132	Resolving orbital pathways for intermolecular electron transfer. Nature Communications, 2018, 9, 4916.	12.8	19
133	Light Excitation of a Bismuth Iodide Complex Initiates l–I Bond Formation Reactions of Relevance to Solar Energy Conversion. Journal of the American Chemical Society, 2017, 139, 8066-8069.	13.7	18
134	A Chargeâ€Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface. Angewandte Chemie - International Edition, 2018, 57, 15390-15394.	13.8	18
135	Stark Spectroscopic Evidence that a Spin Change Accompanies Light Absorption in Transition Metal Polypyridyl Complexes. Journal of the American Chemical Society, 2020, 142, 6847-6851.	13.7	18
136	Mechanistic investigation of a visible light mediated dehalogenation/cyclisation reaction using iron(<scp>iii</scp>), iridium(<scp>iii</scp>) and ruthenium(<scp>ii</scp>) photosensitizers. Catalysis Science and Technology, 2021, 11, 8037-8051.	4.1	18
137	Reversible Carbon Monoxide Photodissociation from Cu(I) Coordination Compounds. Inorganic Chemistry, 2001, 40, 4514-4515.	4.0	17
138	Fundamental Factors Impacting the Stability of Phosphonate-Derivatized Ruthenium Polypyridyl Sensitizers Adsorbed on Metal Oxide Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 22821-22833.	8.0	17
139	Azadipyrromethene cyclometalation in neutral Ru ^{II} complexes: photosensitizers with extended near-infrared absorption for solar energy conversion applications. Dalton Transactions, 2016, 45, 10563-10576.	3.3	16
140	Ter-Ionic Complex that Forms a Bond Upon Visible Light Absorption. Journal of the American Chemical Society, 2018, 140, 7799-7802.	13.7	16
141	Evidence for First-Order Charge Recombination in Dye-Sensitized Solar Cells. ACS Energy Letters, 2017, 2, 2335-2340.	17.4	15
142	Tuning Charge Recombination Rate Constants through Inner-Sphere Coordination in a Copper(I) Donorâ^'Acceptor Compound. Inorganic Chemistry, 2000, 39, 3765-3770.	4.0	14
143	Sensitization of TiO2 by the MLCT Excited State of Col Coordination Compounds. Journal of Physical Chemistry Letters, 2011, 2, 305-308.	4.6	13
144	Flash-Quench Studies on the One-Electron Reduction of Triiodide. Inorganic Chemistry, 2013, 52, 840-847.	4.0	13

#	Article	IF	CITATIONS
145	Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound. Inorganic Chemistry, 2016, 55, 7517-7526.	4.0	13
146	Photophysical Properties of Tetracationic Ruthenium Complexes and Their Ter-Ionic Assemblies with Chloride. Inorganic Chemistry, 2018, 57, 12232-12244.	4.0	13
147	An Insulating Al2O3 Overlayer Prevents Lateral Hole Hopping Across Dye-Sensitized TiO2 Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 27453-27463.	8.0	13
148	Electron Localization and Transport in SnO ₂ /TiO ₂ Mesoporous Thin Films: Evidence for a SnO ₂ /Sn _{<i>x</i>} Ti _{1–<i>x</i>} O ₂ /TiO ₂ Structure, Langmuir, 2019, 35, 12694-12703.	3.5	13
149	Confronting Racism in Chemistry Journals. ACS Applied Materials & amp; Interfaces, 2020, 12, 28925-28927.	8.0	13
150	Ultrafast Relaxations in Ruthenium Polypyridyl Chromophores Determined by Stochastic Kinetics Simulations. Journal of Physical Chemistry B, 2020, 124, 5971-5985.	2.6	13
151	On the Determination of Halogen Atom Reduction Potentials with Photoredox Catalysts. Journal of Physical Chemistry A, 2021, 125, 9355-9367.	2.5	13
152	Factors that Control the Direction of Excited-State Electron Transfer at Dye-Sensitized Oxide Interfaces. Journal of Physical Chemistry C, 2019, 123, 25967-25976.	3.1	12
153	Visible Light Generation of a Microsecond Long-Lived Potent Reducing Agent. Journal of the American Chemical Society, 2022, 144, 7043-7047.	13.7	12
154	Halide Coordination to Zinc Porphyrin Sensitizers Anchored to Nanocrystalline TiO ₂ . Inorganic Chemistry, 2008, 47, 7681-7685.	4.0	11
155	Homoleptic star-shaped Ru(II) complexes. Pure and Applied Chemistry, 2011, 83, 861-868.	1.9	11
156	Excited state electron transfer from cobalt coordination compounds anchored to TiO2. Polyhedron, 2014, 82, 181-190.	2.2	11
157	Evidence for Interfacial Halogen Bonding. Angewandte Chemie, 2016, 128, 6060-6064.	2.0	11
158	Ligand Control of Supramolecular Chloride Photorelease. Inorganic Chemistry, 2018, 57, 5624-5631.	4.0	11
159	Synthesis and Photophysical Properties of a Covalently Linked Porphyrin Chromophore–Ru(II) Water Oxidation Catalyst Assembly on SnO ₂ Electrodes. Journal of Physical Chemistry C, 2018, 122, 13455-13461.	3.1	11
160	A Charge‣eparated State that Lives for Almost a Second at a Conductive Metal Oxide Interface. Angewandte Chemie, 2018, 130, 15616-15620.	2.0	11
161	Oxidatively stable ferrocenyl-ï€-bridge-titanocene D–ï€-A complexes: an electrochemical and spectroscopic investigation of the mixed-valent states. Dalton Transactions, 2018, 47, 10953-10964.	3.3	11
162	Barriers for interfacial back-electron transfer: A comparison between TiO2 and SnO2/TiO2 core/shell structures. Journal of Chemical Physics, 2019, 150, 041719.	3.0	11

#	Article	IF	CITATIONS
163	Excited state electron transfer after visible light absorption by the Co(i) state of vitamin B12. Chemical Communications, 2014, 50, 13304-13306.	4.1	10
164	Tunneling and Thermally Activated Electron Transfer in Dye-Sensitized SnO ₂ TiO ₂ Core Shell Nanostructures. Journal of Physical Chemistry C, 2020, 124, 25148-25159.	3.1	10
165	Chemist's Quest for Inexpensive, Efficient, and Stable Photovoltaics. Journal of Physical Chemistry Letters, 2011, 2, 1965-1966.	4.6	9
166	Dye Excited States Oriented Relative to TiO ₂ Surface Electric Fields. Journal of Physical Chemistry C, 2018, 122, 13863-13871.	3.1	9
167	Inhibiting Charge Recombination in <i>cis</i> -Ru(NCS) ₂ Diimine Sensitizers with Aromatic Substituents. ACS Applied Materials & Interfaces, 2019, 11, 43223-43234.	8.0	9
168	Excited-state proton-coupled electron transfer within ion pairs. Chemical Science, 2020, 11, 3460-3473.	7.4	9
169	Photoinduced electron transfer from Ru am(m)ine compounds with low-lying ligand field excited states to nanocrystalline TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 94-103.	3.9	8
170	Increase in the Coordination Number of a Cobalt Porphyrin after Photo-Induced Interfacial Electron Transfer into Nanocrystalline TiO ₂ . Inorganic Chemistry, 2012, 51, 9865-9872.	4.0	8
171	Excited-State Dipole Moments of Homoleptic [Ru(bpy′) ₃] ²⁺ Complexes Measured by Stark Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 8745-8754.	2.5	8
172	Entropic Barriers Determine Adiabatic Electron Transfer Equilibrium. Journal of Physical Chemistry C, 2019, 123, 3416-3425.	3.1	8
173	Dual-Sensitizer Photoanode for Bromide Oxidation. ACS Applied Energy Materials, 2021, 4, 745-754.	5.1	8
174	Title is missing!. Journal of Fluorescence, 2002, 12, 419-423.	2.5	7
175	Donor–π–acceptor organic hybrid TiO2 interfaces for solar energy conversion. Thin Solid Films, 2014, 560, 49-54.	1.8	7
176	Electric Fields Detected on Dye-Sensitized TiO ₂ Interfaces: Influence of Electrolyte Composition and Ruthenium Polypyridyl Anchoring Group Type. Journal of Physical Chemistry C, 2018, 122, 12712-12722.	3.1	7
177	Influence of 4 and 4′ Substituents on Ru ^{III/II} Bipyridyl Self-Exchange Electron Transfer Across Nanocrystalline TiO ₂ Surfaces. Journal of Physical Chemistry C, 2018, 122, 19385-19394.	3.1	7
178	Flipping Molecules over on TiO ₂ Surfaces with Light and Electric Fields. Journal of the American Chemical Society, 2019, 141, 13898-13904.	13.7	7
179	Control of Excited-State Supramolecular Assembly Leading to Halide Photorelease. Inorganic Chemistry, 2019, 58, 3316-3328.	4.0	7
180	Resolving Halide Ion Stabilization through Kinetically Competitive Electron Transfers. Jacs Au, 2022, 2, 985-995.	7.9	7

#	Article	IF	CITATIONS
181	Temperature dependent iodide oxidation by MLCT excited states. Dalton Transactions, 2014, 43, 17856-17863.	3.3	6
182	Continuous Surface Electric Field Contraction Accompanying Electron Transfer from TiO ₂ to Oxidized Sensitizers. ACS Energy Letters, 2016, 1, 846-851.	17.4	6
183	ACS Applied Energy Materials: A New Journal for Applied Energy Research. ACS Applied Energy Materials, 2018, 1, 1-2.	5.1	6
184	Intramolecular Electronic Coupling Enhances Lateral Electron Transfer across Semiconductor Interfaces. Journal of Physical Chemistry C, 2018, 122, 14420-14424.	3.1	6
185	Light-Induced Processes in Molecular Gel Materials. Progress in Inorganic Chemistry, 0, , 167-208.	3.0	6
186	Antenna molecule drives solar hydrogen generation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9146-9147.	7.1	5
187	Photophysical characterization of new osmium (II) photocatalysts for hydrohalic acid splitting. Journal of Chemical Physics, 2020, 153, 054307.	3.0	5
188	Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces. Journal of Chemical Physics, 2020, 153, 134702.	3.0	5
189	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
190	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
191	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
192	Free Energy Dependencies for Interfacial Electron Transfer from Tin-Doped Indium Oxide (ITO) to Molecular Photoredox Catalysts. ECS Journal of Solid State Science and Technology, 2022, 11, 025003.	1.8	4
193	Charge Rectification at Molecular Nanocrystalline TiO ₂ Interfaces: Overlap Optimization To Promote Vectorial Electron Transfer. Journal of Physical Chemistry C, 2016, 120, 27173-27181.	3.1	3
194	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
195	New Cationic fac-[Re(CO)3(deeb)B2]+ Complex, Where B2 Is a Benzimidazole Derivative, as a Potential New Luminescent Dye for Proteins Separated by SDS-PAGE. Frontiers in Chemistry, 2021, 9, 647816.	3.6	3
196	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
197	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
198	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2

#	Article	IF	CITATIONS
199	A Special Forum Issue on Thermoelectric Energy Conversion. ACS Applied Energy Materials, 2020, 3, 2037-2038.	5.1	2
200	Photocatalyst assemblies with two halide ions. Journal of Photochemistry and Photobiology, 2022, 9, 100090.	2.5	2
201	Molecules as Components in Electronic Devices: Supramolecular Coordination Compounds as Components in Devices. ACS Symposium Series, 2003, , 154-170.	0.5	1
202	The University of North Carolina Energy Frontier Research Center: Center for Solar Fuels. ACS Energy Letters, 2016, 1, 872-874.	17.4	1
203	Alcoholâ€Based Sensitizer–Semiconductor Linkages Towards Improved Interfacial Electron Transfer Kinetics. ChemPhotoChem, 2017, 1, 415-423.	3.0	1
204	<i>ACS Applied Energy Materials</i> : A Special Forum Issue on Solar Fuels. ACS Applied Energy Materials, 2019, 2, 1-2.	5.1	1
205	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
206	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
207	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
208	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
209	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
210	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
211	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
212	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
213	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
214	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
215	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
216	Energy Research at ACS in the Age of Open Access. ACS Omega, 2021, 6, 7967-7969.	3.5	1

#	Article	IF	CITATIONS
217	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
218	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
219	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
220	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
221	Electron transfer in sensitized TiO[sub 2] photoelectrochemical cells. , 1997, , .		0
222	<i>ACS Applied Energy Materials</i> : A Growing Journal with International Appeal. ACS Applied Energy Materials, 2018, 1, 6655-6656.	5.1	0
223	<i>ACS Applied Energy Materials</i> . ACS Applied Energy Materials, 2019, 2, 8366-8368.	5.1	0
224	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
225	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
226	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
227	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
228	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
229	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
230	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
231	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
232	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
233	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
234	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0

#	Article	IF	CITATIONS
235	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
236	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
237	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
238	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
239	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	Ο
240	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
241	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
242	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
243	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
244	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
245	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
246	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
247	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
248	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
249	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
250	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
251	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
252	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0

#	Article	IF	CITATIONS
253	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	О
254	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
255	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	Ο
256	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
257	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	Ο
258	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
259	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	Ο
260	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
261	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
262	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
263	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
264	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
265	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	Ο
266	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
267	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	Ο
268	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
269	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	Ο
270	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0

#	Article	IF	CITATIONS
271	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
272	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
273	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
274	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
275	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
276	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
277	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
278	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
279	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
280	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
281	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
282	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
283	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
284	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
285	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
286	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
287	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
288	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0

#	Article	IF	CITATIONS
289	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
290	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
291	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
292	Young Investigators Advance Energy Applications. ACS Applied Energy Materials, 2020, 3, 1-1.	5.1	0
293	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
294	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
295	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
296	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
297	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
298	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
299	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
300	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
301	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
302	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
303	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
304	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
305	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
306	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0

#	Article	IF	CITATIONS
307	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
308	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
309	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	Ο
310	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
311	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
312	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
313	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
314	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
315	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
316	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
317	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
318	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
319	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
320	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
321	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
322	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
323	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
324	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	Ο
326	ACS Applied Energy Materials Enters Its Fifth Year. ACS Applied Energy Materials, 2022, 5, 1-2.	5.1	0
327	New Faces of <i>ACS Applied Energy Materials</i> . ACS Applied Energy Materials, 2021, 4, 13374-13375.	5.1	0
328	<i>ACS Applied Energy Materials</i> Introduces Early Career Energy Scientists. ACS Applied Energy Materials, 2022, 5, 3886-3887.	5.1	0
329	Virtual Special Issue: Halide Perovskite Materials and Applications. ACS Applied Energy Materials, 2022, 5, 7889-7890.	5.1	Ο
330	Virtual Special Issue: Halide Perovskite Materials and Applications. ACS Applied Electronic Materials, 2022, 4, 3325-3326.	4.3	0