Dmitriy M Makarov

List of Publications by Year in descending order

Source: https:||exaly.com/author-pdf/441979/publications.pdf
Version: 2024-02-01

 (278.15â€"323.15) K and up to 70 MPa . Journal of Chemical \& Engineering Data, 2022, 67, 1115-1124.
1.9 0

Hydrogen Bonds in a Waterâ€"Pyrrolidone System. Russian Journal of Physical Chemistry A, 2022, 96, Molecular Liquids, 2021, 323, 114637.

6 Density of water - 2-pyrrolidone mixture a new vibrating tube densimeter from (278.15ấ" 323.15) K and up to 70ÂMPa. Journal of Molecular Liquids, 2021, 335, 116113.

Pressureâ€"Volumeâ€"Temperature Relationships for Aqueous Solutions of <i> $\mathrm{N}</ \mathrm{i}\rangle-$ Methylacetamide at 8 Temperatures Ranging from 278.15 to 323.15 K and Pressures up to 100 MPa . Journal of Chemical \&

Volumetric Properties of Protic lonic Liquids Based on Alkylammonium Cations at $\langle\mathrm{i}\rangle \mathrm{T}\langle/ \mathrm{i}\rangle=$

19	Densities and Molar Isobaric Thermal Expansions of the Water + Formamide Mixture over the Temperature Range from 274.15 to 333.15 K at Atmospheric Pressure. Journal of Chemical \& Engineering Data, 2017, 62, 1247-1256.	1.9	15
20	Densities and Volumetric Properties of Aqueous Solutions of \{Water (1) + N-Methylurea (2)\} Mixtures at Temperatures of 274.15 ấ" 333.15 K and at Pressures up to 100 MPa . Journal of Chemical \& Engineering Data, 2017, 62, 4383-4394.	1.9	10
21	Excess Cibbs Energy and Local Compositions in the Mixtures C2, C3 Alkane Diols and Triols with Water at Various Pressures. Journal of Solution Chemistry, 2016, 45, 1679-1688.	1.2	1
22	Temperature and composition dependences of volumetric properties of (water + 1,2-propanediol) binary system. Journal of Molecular Liquids, 2016, 222, 656-662.	4.9	11
23	Volume properties of liquid mixture of $\{$ water (1) + ethylenediamine (2)\} over the temperature range from 274.15 to 333.15 K at atmospheric pressure. Thermochimica Acta, 2016, 639, 148-159.	2.7	17
24	Effect of pressure on the structure and dynamics of hydrogen bonds in ethylene glycolâ€"water mixtures: Numerical simulation data. Russian Journal of Physical Chemistry A, 2016, 90, 560-566.	0.6	3
25	Density and Volumetric Properties of Aqueous Solutions of Trimethylamine <i>N</i>-Oxide in the Temperature Range from (278.15 to 323.15) K and at Pressures up to 100 MPa . Journal of Chemical \& Engineering Data, 2015, 60, 1291-1299.	1.9	40

27 Analysis of the pressure effect on the local composition in a water-alkanol mixture using Kirkwood-Buff integrals. Journal of Structural Chemistry, 2014, 55, 263-269.Characterization of the volumetric properties of betaine in aqueous solutions: Compositional,pressure, and temperature dependence. Thermochimica Acta, 2014, 585, 36-44.
29 Volume properties of liquid mixture of water+glycerol over the temperature range from 278.15 to
348.15 K at atmospheric pressure. Thermochimica Acta, 2013, 570, 16-26.
41Liquid phase PVTx properties of binary mixtures of (water+ethylene glycol) in the range from 278.15 to$30 \quad 323.15 \mathrm{~K}$ and from 0.1 to 100 MPa . II. Molar isothermal compressions, molar isobaric expansions, thermal2.513
pressure coefficients and internal pressure. Fluid Phase Equilibria, 2013, 354, 133-146.
31 Liquid phase PVTx properties of (water+tert-butanol) binary mixtures at temperatures from 278.15 to 2.0 13
323.15K and pressures from 0.1 to 100MPa. Journal of Chemical Thermodynamics, 2013, 61, 161-168.
Liquid phase PVTx properties of (water+tert-butanol) binary mixtures at temperatures from 278.15 to323.15 K and pressures from 0.1 to 100 MPa . II. Molar isothermal compressions, molar isobaric2.019expansions, molar thermal pressure coefficients, and internal pressure. Journal of ChemicalThermodynamics, 2013, 61, 169-179. Thermodynamics, 2013, 61, 169-179.
Liquid phase PVTx properties of binary mixtures of (water+ethylene glycol) in the range from 278.15 to
$33 \quad 323.15 \mathrm{~K}$ and from 0.1 to 100 MPa . I. Experimental results, partial and excess thermodynamics properties. 2.5 27
Fluid Phase Equilibria, 2013, 344, 125-138.
Bulk properties of a liquid phase mixture \{ethylene glycol+tert-butanol\} in the temperature range
$34 \quad 278.15 \hat{a} €^{\prime \prime} 348.15 \mathrm{~K}$ and pressures of $0.1-100 \mathrm{MPa}$. I. Experimental results, excess and partial molar volumes. 1.0 2Journal of Structural Chemistry, 2013, 54, 304-319.
Bulk properties of a liquid phase mixture \{ethylene glycol+tert-butanol\} in the temperature range278.15 ấ" 348.15 K and pressures of 0.1 â $€^{\prime \prime} 100 \mathrm{MPa}$. II. Molar isothermal compressibility, molar isobaric

Volumetric properties of the binary mixture of ethylene glycol+tert-butanol at $\mathrm{T}=(278.15,288.15,298.15)$,Tj ETQq4. $00 \mathrm{rgBT}_{29}$ (Overlock

Densities and volume properties of (water+tert-butanol) over the temperature range of (274.15 to) Tj ETQq1 10.784 .314 rgBT/Overl

Volumetric properties of the water-ethylene glycol mixtures in the temperature range 278 â $€$ " 333.15 K at atmospheric pressure. Russian Journal of General Chemistry, 2010, 80, 1577-1585.

The bulk properties of the water-dimethylsulfoxide system at 278 â $€$ " 323.15 K and atmospheric pressure.
Russian Journal of Physical Chemistry A, 2009, 83, 693-698.
0.6

28
$45 \quad$ The compressibility of water-dimethyl sulfoxide mixtures over the temperature and pressure ranges 278 ấ" 323.15 K and lấ" 1000 bar. Russian Journal of Physical Chemistry A, 2009, 83, 2058-2065.
0.6

10

Compressibility coefficients of water-2-propanol mixtures over the temperature and pressure ranges
278 â€" 323.15 K and lâ€"1000 bar. Russian Journal of Physical Chemistry A, 2008, 82, 1037-1041.
0.6

19
46

The bulk properties of ethylene glycol-dimethylsulfoxide mixtures over the temperature range 278 â $€^{\text {" }} 323$
K at $p=0.1 \mathrm{MPa}$. Russian Journal of Physical Chemistry A, 2008, 82, 1778-1784.

Compressibility and partial molar volumes in the water- N, N-dimethylformamide system. Russian Journal of Physical Chemistry A, 2007, 81, 528-534.
0.6

