Yunho Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/441944/yunho-lee-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 85 4,471 35 h-index g-index citations papers 6.03 5,379 9.5 93 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
85	Dye adsorptive thin-film composite membrane with magnetite decorated sulfonated graphene oxide for efficient dye/salt mixture separation. <i>Desalination</i> , 2022 , 524, 115462	10.3	4
84	Binding of carbon monoxide at a single nickel center and its oxidative reactivity toward CO 2 and O 2 . <i>Bulletin of the Korean Chemical Society</i> , 2022 , 43, 222-226	1.2	
83	Photochemistry of Water Treatment Oxidants for Advanced Oxidation Processes. <i>Springer Handbooks</i> , 2022 , 1685-1718	1.3	
82	Nitriles as main products from the oxidation of primary amines by ferrate(VI): Kinetics, mechanisms and toxicological implications for nitrogenous disinfection byproduct control. <i>Water Research</i> , 2021 , 209, 117881	12.5	3
81	Reaction kinetics and degradation efficiency of halogenated methylparabens during ozonation and UV/HO treatment of drinking water and wastewater effluent. <i>Journal of Hazardous Materials</i> , 2021 , 12	27 8 78	1
80	Linkage between bacterial community-mediated hydrogen peroxide detoxification and the growth of Microcystis aeruginosa. <i>Water Research</i> , 2021 , 207, 117784	12.5	0
79	Kinetic and mechanistic investigations of the decomposition of bromamines in the presence of Cu(II). <i>Water Research</i> , 2021 , 207, 117791	12.5	О
78	Removal efficiency of organic micropollutants in successive wastewater treatment steps in a full-scale wastewater treatment plant: Bench-scale application of tertiary treatment processes to improve removal of organic micropollutants persisting after secondary treatment. <i>Chemosphere</i> ,	8.4	2
77	Efficient degradation of ethanolamine by UV/chlorine process via organic chloramine photolysis: Kinetics, products, and implications for ethanolamine wastewater treatment. <i>Chemical Engineering Journal</i> , 2021 , 412, 128631	14.7	2
76	Prediction of Photolysis Kinetics of Viral Genomes under UV Irradiation to Estimate Virus Infectivity Loss. <i>Water Research</i> , 2021 , 198, 117165	12.5	2
75	Facile recovery of gold from e-waste by integrating chlorate leaching and selective adsorption using chitosan-based bioadsorbent. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104661	6.8	2
74	Photosensitizer-peptoid conjugates for photoinactivation of Gram-negative bacteria: structure-activity relationship and mechanistic studies. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 6546-6557	3.9	1
73	Degradation Kinetics of Antibiotic Resistance Gene of Methicillin-Resistant (MRSA) during Water Disinfection with Chlorine, Ozone, and Ultraviolet Light. <i>Environmental Science & Environmental Scien</i>	10.3	14
7 2	Axial Redox Tuning at a Tetragonal Cobalt Center. <i>Inorganic Chemistry</i> , 2021 , 60, 5647-5659	5.1	1
71	Degradation and deactivation of plasmid-encoded antibiotic resistance genes during exposure to ozone and chlorine. <i>Water Research</i> , 2021 , 202, 117408	12.5	1
70	Conformational Adaptation of Peptide Foldamers for the Formation of Metal-Peptide Frameworks. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	1
69	Recent Update on UV Disinfection to Fulfill the Disinfection Credit Value for Enteric Viruses in Water. <i>Environmental Science & Environmental Science</i>	10.3	4

68	Divergent Strategies for the Extension of Heteroaryl Halides Using Norbornadiene as an Acetylene Synthon. <i>Organic Letters</i> , 2020 , 22, 9670-9676	6.2	8
67	Enhanced Gold(III) adsorption using glutaraldehyde-crosslinked chitosan beads: Effect of crosslinking degree on adsorption selectivity, capacity, and mechanism. <i>Separation and Purification Technology</i> , 2020 , 248, 116989	8.3	38
66	Chlorination of N,N-dimethylhydrazine compounds: reaction kinetics, mechanisms, and implications for controlling N-nitrosodimethylamine formation during ozonation. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 2567-2579	4.2	4
65	Occurrence and transformation of gabapentin in urban water quality engineering: Rapid formation of nitrile from amine during drinking water chlorination. <i>Water Research</i> , 2020 , 184, 116123	12.5	6
64	Antibiotics in coastal aquaculture waters: Occurrence and elimination efficiency in oxidative water treatment processes. <i>Journal of Hazardous Materials</i> , 2020 , 396, 122585	12.8	35
63	Kinetics of the reaction between hydrogen peroxide and aqueous iodine: Implications for technical and natural aquatic systems. <i>Water Research</i> , 2020 , 179, 115852	12.5	11
62	Degradation and deactivation of a plasmid-encoded extracellular antibiotic resistance gene during separate and combined exposures to UV and radicals. <i>Water Research</i> , 2020 , 182, 115921	12.5	20
61	Coexposure Degradation of Purine Derivatives in the Sulfate Radical-Mediated Oxidation Process. <i>Environmental Science & Environmental Science & Envir</i>	10.3	12
60	A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. <i>Environment International</i> , 2020 , 144, 106035	12.9	17
59	Relationships among Permeability, Membrane Roughness, and Eukaryote Inhabitation during Submerged Gravity-Driven Membrane (GDM) Filtration. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 8111	2.6	1
58	Mechanistic and Kinetic Understanding of the UV Photolysis of Chlorine and Bromine Species in Water and Formation of Oxyhalides. <i>Environmental Science & Environmental & Environmenta</i>	10.3	22
57	PIP/TMC Interfacial Polymerization with Electrospray: Novel Loose Nanofiltration Membrane for Dye Wastewater Treatment. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 36148-36158	9.5	47
56	Degradation and Deactivation of Bacterial Antibiotic Resistance Genes during Exposure to Free Chlorine, Monochloramine, Chlorine Dioxide, Ozone, Ultraviolet Light, and Hydroxyl Radical. <i>Environmental Science & Dioxide</i> , 2019, 53, 2013-2026	10.3	81
55	Impacts of advanced oxidation processes on disinfection byproducts from dissolved organic matter upon post-chlor(am)ination: A critical review. <i>Chemical Engineering Journal</i> , 2019 , 375, 121929	14.7	35
54	Transformation of an Amine Moiety of Atenolol during Water Treatment with Chlorine/UV: Reaction Kinetics, Products, and Mechanisms. <i>Environmental Science & Environmental Sci</i>	1662	14
53	Elimination efficiency of organic UV filters during ozonation and UV/HO treatment of drinking water and wastewater effluent. <i>Chemosphere</i> , 2019 , 230, 248-257	8.4	9
52	Oxidation of Sulfonamide Antibiotics of Six-Membered Heterocyclic Moiety by Ferrate(VI): Kinetics and Mechanistic Insight into SO Extrusion. <i>Environmental Science & Environmental Science & Environm</i>	4 ^{10.3}	58
51	Effect of membrane property and feed water organic matter quality on long-term performance of the gravity-driven membrane filtration process. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 1152-1162	5.1	17

50	Use of a filtering process to remove solid waste and antibiotic resistance genes from effluent of a flow-through fish farm. <i>Science of the Total Environment</i> , 2018 , 615, 289-296	10.2	18
49	Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. <i>Environmental Pollution</i> , 2018 , 233, 1049-1057	9.3	78
48	Elimination of transforming activity and gene degradation during UV and UV/H2O2 treatment of plasmid-encoded antibiotic resistance genes. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 1239-1251	4.2	36
47	Oxidation kinetics of algal-derived taste and odor compounds during water treatment with ferrate(VI). <i>Chemical Engineering Journal</i> , 2018 , 334, 1065-1073	14.7	21
46	Contribution of dissolved organic matter to the photolysis of methylmercury in estuarine water. <i>Marine Chemistry</i> , 2018 , 207, 13-20	3.7	3
45	Transformation of microcystin-LR and olefinic compounds by ferrate(VI): Oxidative cleavage of olefinic double bonds as the primary reaction pathway. <i>Water Research</i> , 2018 , 141, 268-278	12.5	14
44	Transformation of methylparaben during water chlorination: Effects of bromide and dissolved organic matter on reaction kinetics and transformation pathways. <i>Science of the Total Environment</i> , 2018 , 634, 677-686	10.2	20
43	Reactions of Ferrate(VI) with Iodide and Hypoiodous Acid: Kinetics, Pathways, and Implications for the Fate of Iodine during Water Treatment. <i>Environmental Science & Environmental Science & Environ</i>	6 ¹ 70.3	51
42	Elimination of trace organic contaminants during enhanced wastewater treatment with horseradish peroxidase/hydrogen peroxide (HRP/H2O2) catalytic process. <i>Catalysis Today</i> , 2017 , 282, 86-94	5.3	20
41	Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/HO. <i>Water Research</i> , 2017 , 123, 783-793	12.5	122
40	Developing and applying a site-specific multimedia fate model to address ecological risk of oxytetracycline discharged with aquaculture effluent in coastal waters off Jangheung, Korea. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 145, 221-226	7	11
39	Surface Water Organophosphorus Pesticides Concentration and Distribution in the Langat River, Selangor, Malaysia. <i>Exposure and Health</i> , 2016 , 8, 497-511	8.8	29
38	Influence of Seasonal Variation of Water Temperature and Dissolved Organic Matter on Ozone and OH Radical Reaction Kinetics During Ozonation of a Lake Water. <i>Ozone: Science and Engineering</i> , 2016 , 38, 100-114	2.4	12
37	Tin porphyrin immobilization significantly enhances visible-light-photosensitized degradation of Microcystins: Mechanistic implications. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 33-44	21.8	10
36	Inactivation efficiency of Escherichia coli and autochthonous bacteria during ozonation of municipal wastewater effluents quantified with flow cytometry and adenosine tri-phosphate analyses. <i>Water Research</i> , 2016 , 101, 617-627	12.5	49
35	Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation. <i>Environmental Science & Environmental </i>	10.3	102
34	Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 421-442	4.2	103
33	Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential. <i>Journal of Hazardous Materials</i> , 2016 , 318, 802-809	12.8	25

32	Elimination of Organic Contaminants during Oxidative Water Treatment with Ferrate(VI): Reaction Kinetics and Transformation Products. <i>ACS Symposium Series</i> , 2016 , 255-273	0.4	1
31	Emerging investigators series: prediction of trace organic contaminant abatement with UV/H2O2: development and validation of semi-empirical models for municipal wastewater effluents. <i>Environmental Science: Water Research and Technology</i> , 2016 , 2, 460-473	4.2	20
30	N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control. <i>Water Research</i> , 2016 , 105, 119-128	12.5	43
29	A multi-parametric approach assessing microbial viability and organic matter characteristics during managed aquifer recharge. <i>Science of the Total Environment</i> , 2015 , 524-525, 290-9	10.2	13
28	Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: The effects of pH and dissolved organic matter characteristics. <i>Water Research</i> , 2015 , 86, 25-34	12.5	51
27	Ferrate(VI) oxidation of Elactam antibiotics: reaction kinetics, antibacterial activity changes, and transformation products. <i>Environmental Science & Environmental Science &</i>	10.3	91
26	Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. <i>Water Research</i> , 2014 , 64, 134-148	12.5	158
25	Reaction of ferrate(VI) with ABTS and self-decay of ferrate(VI): kinetics and mechanisms. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 5154-62	10.3	163
24	Effects of hydrodynamic conditions (diffusion vs. convection) and solution chemistry on effective molecular weight cut-off of negatively charged nanofiltration membranes. <i>Desalination</i> , 2014 , 352, 136-	-1413	11
23	Analysis of N-nitrosamines and other nitro(so) compounds in water by high-performance liquid chromatography with post-column UV photolysis/Griess reaction. <i>Water Research</i> , 2013 , 47, 4893-903	12.5	34
22	Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection. <i>Water Research</i> , 2013 , 47, 5381-91	12.5	37
21	Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. <i>Environmental Science & Environmental Science & Environme</i>	10.3	278
20	Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. <i>Water Research</i> , 2012 , 46, 6257-72	12.5	147
19	Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. <i>Water Research</i> , 2012 , 46, 6177-95	12.5	228
18	Changes in the sorption and rate of 17Eestradiol biodegradation by dissolved organic matter collected from different water sources. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 543-51		7
17	Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). <i>Water Research</i> , 2010 , 44, 555-66	12.5	519
16	Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water. <i>Environmental Technology (United Kingdom)</i> , 2009 , 30, 1425-34	2.6	20
15	Transformation of 17alpha-ethinylestradiol during water chlorination: effects of bromide on kinetics, products, and transformation pathways. <i>Environmental Science & Environmental Science & Environm</i>	10.3	54

14	Ferrate (Fe(VI)) application for Municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 3831-8	10.3	254
13	Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): kinetics and effect on the NDMA formation potential of natural waters. <i>Water Research</i> , 2008 , 42, 433-41	12.5	82
12	Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. <i>Environmental Science & Environmental Sci</i>	10.3	119
11	Inactivation of Bacillus subtilis spores during ozonation in water treatment plant: influence of pre-treatment and consequences for positioning of the ozonation step. <i>Chemosphere</i> , 2007 , 69, 675-81	8.4	17
10	Oxidative degradation of dimethylsulfoxide by locally concentrated hydroxyl radicals in streamer corona discharge process. <i>Chemosphere</i> , 2006 , 65, 1163-70	8.4	26
9	Study on Fe(VI) species as a disinfectant: quantitative evaluation and modeling for inactivating Escherichia coli. <i>Water Research</i> , 2006 , 40, 3580-6	12.5	65
8	Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). <i>Environmental Science & Echnology</i> , 2005 , 39, 8978-84	10.3	226
7	Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. Water Research, 2005, 39, 1946	- 53 .5	152
7	Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. <i>Water Research</i> , 2005 , 39, 1946 Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 1129-34	-53 .5	15254
<i></i>	Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and		
6	Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 1129-34 Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H(2)O(2) process. <i>Water</i>	4.8	54
6 5	Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 1129-34 Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H(2)O(2) process. <i>Water Research</i> , 2004 , 38, 2579-88 Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III)	4.8	54 73
6 5 4	Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 1129-34 Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H(2)O(2) process. <i>Water Research</i> , 2004 , 38, 2579-88 Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. <i>Environmental Science & Description</i> , 2003 , 37, 5750-6 High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe3+/H(2)O(2)	4.8	5473225