Virginie Hamel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/44191/publications.pdf

Version: 2024-02-01

394286 526166 1,512 26 19 27 citations g-index h-index papers 49 49 49 1342 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nature Methods, 2019, 16, 71-74.	9.0	335
2	A helical inner scaffold provides a structural basis for centriole cohesion. Science Advances, 2020, 6, eaaz4137.	4.7	116
3	Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). Nature Communications, 2020, 11, 3388.	5.8	112
4	Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells. Journal of Cell Biology, 2014, 204, 697-712.	2.3	77
5	Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. PLoS Biology, 2021, 19, e3001020.	2.6	77
6	Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nature Communications, 2017, 8, 14813.	5.8	74
7	SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centrioleAarchitecture. Nature Cell Biology, 2016, 18, 393-403.	4.6	73
8	Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii. ELife, 2020, 9, .	2.8	71
9	Ultrastructure expansion microscopy (U-ExM). Methods in Cell Biology, 2021, 161, 57-81.	0.5	67
10	Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis. Current Biology, 2017, 27, 2486-2498.e6.	1.8	53
11	The Rise of the Cartwheel: Seeding the Centriole Organelle. BioEssays, 2018, 40, e1700241.	1.2	53
12	Homogeneous multifocal excitation for high-throughput super-resolution imaging. Nature Methods, 2020, 17, 726-733.	9.0	46
13	Overview of the centriole architecture. Current Opinion in Structural Biology, 2021, 66, 58-65.	2.6	46
14	Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM). Nature Methods, 2022, 19, 216-222.	9.0	40
15	Correlative multicolor 3D SIM and STORM microscopy. Biomedical Optics Express, 2014, 5, 3326.	1.5	37
16	Flagellar microtubule doublet assembly in vitro reveals a regulatory role of tubulin C-terminal tails. Science, 2019, 363, 285-288.	6.0	37
17	Architecture of the centriole cartwheelâ€containing region revealed by cryoâ€electron tomography. EMBO Journal, 2020, 39, e106246.	3.5	32
18	The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biology, 2022, 20, e3001649.	2.6	32

#	Article	IF	CITATION
19	WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. ELife, 2020, 9, .	2.8	31
20	Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy. IEEE Transactions on Medical Imaging, 2018, 37, 1235-1246.	5.4	15
21	The centriolar tubulin code. Seminars in Cell and Developmental Biology, 2023, 137, 16-25.	2.3	15
22	Improving the resolution of fluorescence nanoscopy using post-expansion labeling microscopy. Methods in Cell Biology, 2021, 161, 297-315.	0.5	12
23	Computational support for a scaffolding mechanism of centriole assembly. Scientific Reports, 2016, 6, 27075.	1.6	11
24	Isolation, cryotomography, and three-dimensional reconstruction of centrioles. Methods in Cell Biology, 2015, 129, 191-209.	0.5	7
25	Isolation and Fluorescence Imaging for Single-particle Reconstruction of Chlamydomonas Centrioles. Journal of Visualized Experiments, 2018, , .	0.2	7
26	Tuning SAS-6 architecture with monobodies impairs distinct steps of centriole assembly. Nature Communications, 2021, 12, 3805.	5.8	3