Andrés A Trabanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4419080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Brain-Penetrant and Bioavailable Pyrazolopiperazine BACE1 Inhibitor Elicits Sustained Reduction of Amyloid β In Vivo. ACS Medicinal Chemistry Letters, 2022, 13, 76-83.	1.3	3
2	[18F]Difluorocarbene for positron emission tomography. Nature, 2022, 606, 102-108.	13.7	30
3	O-GlcNAcase inhibitors as potential therapeutics for the treatment of Alzheimer's disease and related tauopathies: analysis of the patent literature. Expert Opinion on Therapeutic Patents, 2021, 31, 1117-1154.	2.4	21
4	Scaffold Hopping to Imidazo[1,2-a]pyrazin-8-one Positive Allosteric Modulators of Metabotropic Glutamate 2 Receptor. ACS Omega, 2021, 6, 22997-23006.	1.6	1
5	Late-stage difluoromethylation: concepts, developments and perspective. Chemical Society Reviews, 2021, 50, 8214-8247.	18.7	172
6	Spiro-oxindole Piperidines and 3-(Azetidin-3-yl)-1 <i>H</i> -benzimidazol-2-ones as mGlu ₂ Receptor PAMs. ACS Medicinal Chemistry Letters, 2020, 11, 303-308.	1.3	5
7	Silyl Radical-Mediated Activation of Sulfamoyl Chlorides Enables Direct Access to Aliphatic Sulfonamides from Alkenes. Journal of the American Chemical Society, 2020, 142, 720-725.	6.6	78
8	Diazaspirononane Nonsaccharide Inhibitors of O-GlcNAcase (OGA) for the Treatment of Neurodegenerative Disorders. Journal of Medicinal Chemistry, 2020, 63, 14017-14044.	2.9	10
9	[1,2,4]Triazolo[1,5- <i>a</i>]pyrimidine Phosphodiesterase 2A Inhibitors: Structure and Free-Energy Perturbation-Guided Exploration. Journal of Medicinal Chemistry, 2020, 63, 12887-12910.	2.9	14
10	Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angewandte Chemie, 2020, 132, 11717-11723.	1.6	24
11	Organophotoredox Hydrodefluorination of Trifluoromethylarenes with Translational Applicability to Drug Discovery. Journal of the American Chemical Society, 2020, 142, 9181-9187.	6.6	120
12	Hydrogen Bonding Phase-Transfer Catalysis with Ionic Reactants: Enantioselective Synthesis of γ-Fluoroamines. Journal of the American Chemical Society, 2020, 142, 14045-14051.	6.6	53
13	Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angewandte Chemie - International Edition, 2020, 59, 11620-11626.	7.2	100
14	Easy Access to Aliphatic Sulfonamides using Sulfamoyl Chlorides Under Visible Light Activation. Journal of Visualized Experiments, 2020, , .	0.2	1
15	Small Molecule Binding to Alzheimer Risk Factor CD33 Promotes AÎ ² Phagocytosis. IScience, 2019, 19, 110-118.	1.9	59
16	Evaluation of a Series of β-Secretase 1 Inhibitors Containing Novel Heteroaryl-Fused-Piperazine Amidine Warheads. ACS Medicinal Chemistry Letters, 2019, 10, 1159-1165.	1.3	20
17	mGluR2 positive allosteric modulators: an updated patent review (2013–2018). Expert Opinion on Therapeutic Patents, 2019, 29, 497-507	2.4	21
18	Hydrochlorofluoromethylation of unactivated alkenes with chlorofluoroacetic acid. Tetrahedron, 2019, 75, 130679.	1.0	7

Andrés A Trabanco

#	Article	IF	CITATIONS
19	Progress toward allosteric ligands of metabotropic glutamate 7 (mGlu7) receptor: 2008–present. MedChemComm, 2019, 10, 193-199.	3.5	3
20	Hydrodifluoromethylation of Alkenes with Difluoroacetic Acid. Angewandte Chemie - International Edition, 2019, 58, 8829-8833.	7.2	107
21	Hydrodifluoromethylation of Alkenes with Difluoroacetic Acid. Angewandte Chemie, 2019, 131, 8921-8925.	1.6	20
22	Inhibition of the Alanine-Serine-Cysteine-1 Transporter by BMS-466442. ACS Chemical Neuroscience, 2019, 10, 2510-2517.	1.7	8
23	Computationally Guided Identification of Allosteric Agonists of the Metabotropic Glutamate 7 Receptor. ACS Chemical Neuroscience, 2019, 10, 1043-1054.	1.7	5
24	Covalent Allosteric Probe for the Metabotropic Glutamate ReceptorÂ2: Design, Synthesis, and Pharmacological Characterization. Journal of Medicinal Chemistry, 2019, 62, 223-233.	2.9	17
25	Optimization of 1,4-Oxazine β-Secretase 1 (BACE1) Inhibitors Toward a Clinical Candidate. Journal of Medicinal Chemistry, 2018, 61, 5292-5303.	2.9	15
26	Bench-Stable Transfer Reagent Facilitates the Generation of Trifluoromethyl-sulfonimidamides. Journal of Organic Chemistry, 2018, 83, 9510-9516.	1.7	22
27	Discovery of <i>N</i> -(Pyridin-4-yl)-1,5-naphthyridin-2-amines as Potential Tau Pathology PET Tracers for Alzheimer's Disease. Journal of Medicinal Chemistry, 2017, 60, 1272-1291.	2.9	31
28	Acylguanidine Beta Secretase 1 Inhibitors: A Combined Experimental and Free Energy Perturbation Study. Journal of Chemical Theory and Computation, 2017, 13, 1439-1453.	2.3	67
29	Continuous Flow α-Arylation of <i>N</i> , <i>N</i> -Dialkylhydrazones under Visible-Light Photoredox Catalysis. Organic Letters, 2017, 19, 938-941.	2.4	28
30	1,3,5â€Trisubstituted Pyrazoles as Potent Negative Allosteric Modulators of the mGlu _{2/3} Receptors. ChemMedChem, 2017, 12, 905-912.	1.6	9
31	Fragment Binding to β-Secretase 1 without Catalytic Aspartate Interactions Identified via Orthogonal Screening Approaches. ACS Omega, 2017, 2, 685-697.	1.6	14
32	The Synthesis of Trifluoromethyl-sulfonimidamides from Sulfinamides. Journal of Organic Chemistry, 2017, 82, 9898-9904.	1.7	32
33	Identification of Allosteric Modulators of Metabotropic Glutamate 7 Receptor Using Proteochemometric Modeling. Journal of Chemical Information and Modeling, 2017, 57, 2976-2985.	2.5	18
34	Discovery and Kinetic Profiling of 7-Aryl-1,2,4-triazolo[4,3- <i>a</i>]pyridines: Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2. Journal of Medicinal Chemistry, 2017, 60, 6704-6720.	2.9	35
35	Industrial medicinal chemistry insights: neuroscience hit generation at Janssen. Drug Discovery Today, 2017, 22, 1478-1488.	3.2	5
36	Molecular mechanism of positive allosteric modulation of the metabotropic glutamate receptor 2 by JNJâ€46281222. British Journal of Pharmacology, 2016, 173, 588-600.	2.7	39

#	Article	IF	CITATIONS
37	Application of Free Energy Perturbation for the Design of BACE1 Inhibitors. Journal of Chemical Information and Modeling, 2016, 56, 1856-1871.	2.5	92
38	Discovery of 8-Trifluoromethyl-3-cyclopropylmethyl-7-[(4-(2,4-difluorophenyl)-1-piperazinyl)methyl]-1,2,4-triazolo[4,3- <i>a</i> (JNJ-46356479), a Selective and Orally Bioavailable mGlu2 Receptor Positive Allosteric Modulator (PAM). Journal of Medicinal Chemistry, 2016, 59, 8495-8507.]pyridine	35
39	Towards selective phosphodiesterase 2A (PDE2A) inhibitors: a patent review (2010 - present). Expert Opinion on Therapeutic Patents, 2016, 26, 933-946.	2.4	22
40	A Versatile Approach to CF3-Containing 2-Pyrrolidones by Tandem Michael Addition-Cyclization: Exemplification in the Synthesis of Amidine Class BACE1 Inhibitors. Chemistry - A European Journal, 2015, 21, 11617-11617.	1.7	0
41	A Versatile Approach to CF ₃ â€Containing 2â€Pyrrolidones by Tandem Michael Addition–Cyclization: Exemplification in the Synthesis of Amidine Class BACE1 Inhibitors. Chemistry - A European Journal, 2015, 21, 11719-11726.	1.7	16
42	Synthesis of 2,1â€Borazaroquinolines and 2,1â€Borazaroisoquinolines from VinylÂaminopyridines and Potassium Organotrifluoroborates by Microwaveâ€Assisted Heating. European Journal of Organic Chemistry, 2015, 2015, 5221-5229.	1.2	17
43	Pyrido[4,3- <i>e</i>][1,2,4]triazolo[4,3- <i>a</i>]pyrazines as Selective, Brain Penetrant Phosphodiesterase 2 (PDE2) Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 282-286.	1.3	49
44	N-bridged 5,6-bicyclic pyridines: Recent applications in central nervous system disorders. European Journal of Medicinal Chemistry, 2015, 97, 719-731.	2.6	18
45	Pharmacological and pharmacokinetic properties of JNJâ€40411813, a positive allosteric modulator of the mGlu2 receptor. Pharmacology Research and Perspectives, 2015, 3, e00096.	1.1	32
46	Molecular determinants of positive allosteric modulation of the human metabotropic glutamate receptor 2. British Journal of Pharmacology, 2015, 172, 2383-2396.	2.7	37
47	1,4-Oxazine β-Secretase 1 (BACE1) Inhibitors: From Hit Generation to Orally Bioavailable Brain Penetrant Leads. Journal of Medicinal Chemistry, 2015, 58, 8216-8235.	2.9	67
48	Benzazaborinines as Novel Bioisosteric Replacements of Naphthalene: Propranolol as an Example. Journal of Medicinal Chemistry, 2015, 58, 9287-9295.	2.9	62
49	Anilinotriazoles as potent gamma secretase modulators. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5805-5813.	1.0	17
50	Metabotropic Glutamate Receptor 2 Activators. Topics in Medicinal Chemistry, 2014, , 101-142.	0.4	4
51	A General Synthesis of αâ€Trifluoromethylstyrenes through Palladiumâ€Catalyzed Crossâ€Couplings with 1,1,1â€Trifluoroacetone Tosylhydrazone. Advanced Synthesis and Catalysis, 2014, 356, 1079-1084.	2.1	34
52	Diastereoselective Synthesis of 2-Phenyl-3-(trifluoromethyl)piperazines as Building Blocks for Drug Discovery. Journal of Organic Chemistry, 2014, 79, 5887-5894.	1.7	19
53	QSAR design of triazolopyridine mGlu2 receptor positive allosteric modulators. Journal of Molecular Graphics and Modelling, 2014, 53, 82-91.	1.3	20
54	Discovery of 1-Butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-(1 <i>H</i>)-pyridone (JNJ-40411813): A Novel Positive Allosteric Modulator of the Metabotropic Glutamate 2 Receptor. Journal of Medicinal Chemistry, 2014, 57, 6495-6512.	2.9	54

Andrés A Trabanco

#	Article	IF	CITATIONS
55	Structure-Based Design of a Potent, Selective, and Brain Penetrating PDE2 Inhibitor with Demonstrated Target Engagement. ACS Medicinal Chemistry Letters, 2014, 5, 1049-1053.	1.3	41
56	Design and synthesis of bicyclic heterocycles as potent Î ³ -secretase modulators. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4794-4800.	1.0	18
57	Dihydrothiazolopyridone Derivatives as a Novel Family of Positive Allosteric Modulators of the Metabotropic Glutamate 5 (mGlu ₅) Receptor. Journal of Medicinal Chemistry, 2013, 56, 7243-7259.	2.9	20
58	Discovery of a new series of [1,2,4]triazolo[4,3-a]quinoxalines as dual phosphodiesterase 2/phosphodiesterase 10 (PDE2/PDE10) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 785-790.	1.0	28
59	mGluR2 positive allosteric modulators: a patent review (2009 – present). Expert Opinion on Therapeutic Patents, 2013, 23, 629-647.	2.4	37
60	Pharmacological Characterization of JNJ-40068782, a New Potent, Selective, and Systemically Active Positive Allosteric Modulator of the mGlu2 Receptor and Its Radioligand [³ H]JNJ-40068782. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 514-527.	1.3	59
61	Regioselective Preparation of 3â€Alkoxyâ€4,5â€difluoroanilines by S _N Ar. European Journal of Organic Chemistry, 2012, 2012, 7048-7052.	1.2	7
62	A practical entry to β-aryl-β-alkyl amino alcohols: application to the synthesis of a potent BACE1 inhibitor. Organic and Biomolecular Chemistry, 2012, 10, 6758.	1.5	12
63	Discovery of 1,4-Disubstituted 3-Cyano-2-pyridones: A New Class of Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor. Journal of Medicinal Chemistry, 2012, 55, 2388-2405.	2.9	33
64	Imidazo[1,2- <i>a</i>]pyridines: Orally Active Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor. Journal of Medicinal Chemistry, 2012, 55, 2688-2701.	2.9	55
65	Design and Synthesis of a Novel Series of Bicyclic Heterocycles As Potent Î ³ -Secretase Modulators. Journal of Medicinal Chemistry, 2012, 55, 9089-9106.	2.9	59
66	Synthesis, Evaluation, and Radiolabeling of New Potent Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2 as Potential Tracers for Positron Emission Tomography Imaging. Journal of Medicinal Chemistry, 2012, 55, 8685-8699.	2.9	48
67	Discovery of 3-Cyclopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-trifluoromethyl[1,2,4]triazolo[4,3- <i>a</i>)pyridine (JNJ-42153605): A Positive Allosteric Modulator of the Metabotropic Glutamate 2 Receptor. Journal of Medicinal Chemistry, 2012, 55, 8770-8789	2.9	71
68	New positive allosteric modulators of the metabotropic glutamate receptor 2 (mGluR2). Identification and synthesis of N-propyl-5-substituted isoquinolones. MedChemComm, 2011, 2, 132-139.	3.5	10
69	Rational design and synthesis of aminopiperazinones as Î ² -secretase (BACE) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7255-7260.	1.0	44
70	Design, Synthesis, and Biological Evaluation of Novel Fluorinated Ethanolamines. Chemistry - A European Journal, 2011, 17, 14772-14784.	1.7	14
71	New positive allosteric modulators of the metabotropic glutamate receptor 2 (mGluR2): Identification and synthesis of N-propyl-8-chloro-6-substituted isoquinolones. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 971-976.	1.0	18
72	Progress in the Developement of Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2. Current Medicinal Chemistry, 2011, 18, 47-68.	1.2	44

#	Article	IF	CITATIONS
73	Microwave-assisted N-debenzylation of amides with triflic acid. Tetrahedron Letters, 2010, 51, 4815-4818.	0.7	27
74	Scaffold hopping from pyridones to imidazo[1,2-a]pyridines. New positive allosteric modulators of metabotropic glutamate 2 receptor. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 175-179.	1.0	73
75	Discovery of 1,5-Disubstituted Pyridones: A New Class of Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor. ACS Chemical Neuroscience, 2010, 1, 788-795.	1.7	21
76	Mononuclear Biscarbene Complexes by Direct Nucleophile Addition to a CO Ligand of Fischer Arylcarbene Complexes. Chemistry - A European Journal, 2008, 14, 5401-5404.	1.7	12
77	Fluorous-Tagged Carbamates for the Pd-Catalyzed Amination of Aryl Halides. Journal of Organic Chemistry, 2007, 72, 8146-8148.	1.7	46
78	4-Phenyl-4-[1H-imidazol-2-yl]-piperidine derivatives as non-peptidic selective δ-opioid agonists with potential anxiolytic/antidepressant properties. Part 2. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3860-3863.	1.0	19
79	4-Phenyl-4-[1H-imidazol-2-yl]-piperidine derivatives, a novel class of selective δ-opioid agonists. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 146-149.	1.0	7
80	Novel 2-N,N-dimethylaminomethyl-2,3,3a,12b-tetrahydrodibenzo[b,f]furo[2,3-d]oxepin derivatives displaying combined norepinephrine reuptake inhibition and 5-HT2A/2C receptor antagonism. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2898-2901.	1.0	13
81	Synthesis of 2-N,N-dimethylaminomethyl-2,3,3a,12b-tetrahydrodibenzo[b,f]furo[2,3-d]oxepine derivatives as potential anxiolytic agents. Part 2: substitutions by methyl groups on the tetrahydrofuran ring. Il Farmaco, 2005, 60, 241-248.	0.9	15
82	Potassium Iodide Catalyzed Monoalkylation of Anilines under Microwave Irradiation ChemInform, 2005, 36, no.	0.1	0
83	Synthesis of 2-N,N-Dimethylaminomethyl-2,3,3a,12b-tetrahydrodibenzo[b,f]furo [2,3-d]oxepine Derivatives as Potential Anxiolytic Agents. Part 2. Substitutions by Methyl Groups on the Tetrahydrofuran Ring ChemInform, 2005, 36, no.	0.1	0
84	Novel 2-N,N-Dimethylaminomethyl-2,3,3a,12b-tetrahydrodibenzo[b,f]furo [2,3-d]oxepin Derivatives Displaying Combined Norepinephrine Reuptake Inhibition and 5-HT2A/2C Receptor Antagonism ChemInform, 2005, 36, no.	0.1	0
85	Discovery of New Tetracyclic Tetrahydrofuran Derivatives as Potential Broad-Spectrum Psychotropic Agents. Journal of Medicinal Chemistry, 2005, 48, 1709-1712.	2.9	66
86	Selective α-Monoallylation of Phenyl Ketones and Benzocycloalkanones under Microwave Irradiation ChemInform, 2004, 35, no.	0.1	0
87	Selective α-monoallylation of phenyl ketones and benzocycloalkanones under microwave irradiation. Tetrahedron Letters, 2004, 45, 1133-1136.	0.7	10
88	Potassium iodide catalysed monoalkylation of anilines under microwave irradiation. Tetrahedron Letters, 2004, 45, 8797-8800.	0.7	66
89	Synthesis and structure–activity relationship of 2-(aminoalkyl)-3,3a,8,12b-tetrahydro-2H-dibenzocyclohepta[1,2-b]furan derivatives: a novel series of 5-HT2A/2C receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2765-2771.	1.0	18
90	Synthesis and Reactions of Aminoporphyrazines with Annulated Five- and Seven-Membered Rings. Journal of Organic Chemistry, 2003, 68, 1665-1670.	1.7	69

#	Article	IF	CITATIONS
91	2- and 3-Haloalkoxy Fischer Carbene Complexes of Chromium as Synthons for either Hydroxycyclopropanation or Oxaspirocyclopropanation of Alkenes. Chemistry - A European Journal, 2001, 7, 4723-4729.	1.7	15
92	Diastereoselective Intermolecular Cyclopropanation of Simple Alkenes by Fischer Alkenyl and Heteroaryl Carbene Complexes of Chromium:Â Scope and Limitations. Journal of the American Chemical Society, 2000, 122, 8145-8154.	6.6	48
93	Asymmetric Benzopentaannulation from Tungsten ((â^')-Menthyloxy)(aryl)carbene Complexes, Alkynyllithiums, and Methyl Triflate. Journal of the American Chemical Society, 1998, 120, 12129-12130.	6.6	37
94	Diastereoselective Cyclopropanation of Simple Alkenes by 2-Phenyl- and 2-Ferrocenylalkenyl Fischer Carbene Complexes of Chromium. Journal of the American Chemical Society, 1997, 119, 7591-7592.	6.6	34
95	Asymmetric Conjugate Nucleophilic Addition of Organolithiums to Chromium (Menthyloxy)(aryl)carbene Complexes. Journal of the American Chemical Society, 1996, 118, 13099-13100.	6.6	40