Giuseppe Emmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4419027/publications.pdf Version: 2024-02-01

CHISEDDE EMMI

#	Article	IF	CITATIONS
1	An analysis of solar assisted ground source heat pumps in cold climates. Energy Conversion and Management, 2015, 106, 660-675.	9.2	153
2	A heat pump coupled with photovoltaic thermal hybrid solar collectors: A case study of a multi-source energy system. Energy Conversion and Management, 2017, 151, 386-399.	9.2	79
3	An evaluation of the suitability of lumped-capacitance models in calculating energy needs and thermal behaviour of buildings. Energy and Buildings, 2017, 150, 447-465.	6.7	61
4	A sensitivity analysis on the heating and cooling energy flexibility of residential buildings. Sustainable Cities and Society, 2020, 52, 101815.	10.4	59
5	Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps. Energy, 2018, 153, 788-800.	8.8	58
6	Analysis of operating modes of a ground source heat pump with short helical heat exchangers. Energy Conversion and Management, 2015, 97, 351-361.	9.2	55
7	A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study. Energy Conversion and Management, 2017, 131, 135-150.	9.2	47
8	Empirical modeling of maps of geo-exchange potential for shallow geothermal energy at regional scale. Geothermics, 2015, 57, 173-184.	3.4	43
9	An appropriate use of the thermal response test for the design of energy foundation piles with U-tube circuits. Energy and Buildings, 2017, 134, 259-270.	6.7	38
10	Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods. Energies, 2017, 10, 801.	3.1	35
11	A dynamic analysis of a SAGSHP system coupled to solar thermal collectors and photovoltaic-thermal panels under different climate conditions. Energy Conversion and Management, 2020, 213, 112851.	9.2	28
12	Validation of a numerical model aimed at the estimation of performance of vapor compression based heat pumps. Energy and Buildings, 2012, 47, 411-420.	6.7	27
13	The validation of a novel lumped parameter model for photovoltaic thermal hybrid solar collectors: a new TRNSYS type. Energy Conversion and Management, 2019, 188, 414-428.	9.2	23
14	Energy performance and cost analysis of some borehole heat exchanger configurations with different heat-carrier fluids in mild climates. Geothermics, 2017, 65, 158-169.	3.4	22
15	Energetic and Exergetic Analysis of Low Global Warming Potential Refrigerants as Substitutes for R410A in Ground Source Heat Pumps. Energies, 2019, 12, 3538.	3.1	22
16	Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers. Energies, 2019, 12, 2321.	3.1	22
17	Feasibility analysis of a Borehole Heat Exchanger (BHE) array to be installed in high geothermal flux area: The case of the Euganean Thermal Basin, Italy. Renewable Energy, 2015, 78, 93-104.	8.9	21
18	Energy analysis of different configurations for a reversible ground source heat pump using a new flexible TRNSYS Type. Applied Thermal Engineering, 2021, 197, 117413.	6.0	21

GIUSEPPE EMMI

#	Article	IF	CITATIONS
19	Solar Assisted Ground Source Heat Pump in Cold Climates. Energy Procedia, 2015, 82, 623-629.	1.8	19
20	A Database for Climatic Conditions around Europe for Promoting GSHP Solutions. Geosciences (Switzerland), 2018, 8, 71.	2.2	18
21	Improving the Energy Efficiency, Limiting Costs and Reducing CO2 Emissions of a Museum Using Geothermal Energy and Energy Management Policies. Energies, 2019, 12, 3192.	3.1	17
22	Ground source heat pump systems in historical buildings: two Italian case studies. Energy Procedia, 2017, 133, 183-194.	1.8	16
23	Possible applications of ground coupled heat pumps in high geothermal gradient zones. Energy and Buildings, 2014, 79, 12-22.	6.7	13
24	A European Database of Building Energy Profiles to Support the Design of Ground Source Heat Pumps. Energies, 2019, 12, 2496.	3.1	13
25	Role of phase change materials in backfilling of flat-panels ground heat exchanger. Renewable Energy, 2022, 189, 1324-1336.	8.9	13
26	ulti-Source Heat Pump Coupled with a Photovoltaic Thermal (PVT) Hybrid Solar Collectors Technology: a Case Study in Residential Application. International Journal of Energy Production and Management, 2016, 1, 382-392.	3.7	10
27	Analysis of Retrofit Solutions of a Ground Source Heat Pump System: An Italian Case Study. Energies, 2020, 13, 5680.	3.1	9
28	A comparison of numerical simulation methods analyzing the performance of a ground-coupled heat pump system. Science and Technology for the Built Environment, 2018, 24, 502-512.	1.7	8
29	Use of Municipal Solid Waste Landfill as Heat Source of Heat Pump. Energy Procedia, 2016, 101, 352-359.	1.8	7
30	Development of an Advanced Simulation Model for Solar Cooling Plants. Energy Procedia, 2015, 70, 495-503.	1.8	6
31	A Novel Ground-Source Heat Pump with R744 and R1234ze as Refrigerants. Energies, 2020, 13, 5654.	3.1	6
32	EU project "Cheap-GSHPs― the geoexchange field laboratory. Energy Procedia, 2017, 125, 511-519.	1.8	4
33	All-air system and radiant floor for heating and cooling in residential buildings: A simulation-based analysis. Science and Technology for the Built Environment, 2020, 26, 1397-1411.	1.7	4
34	New tools to support the designing of efficient and reliable ground source heat exchangers: the Cheap-GSHPs databases and maps. Advances in Geosciences, 0, 49, 47-55.	12.0	4
35	Energy analysis of a wood or pellet stove in a single-family house equipped with gas boiler and radiators. Building Simulation, 2022, 15, 1577-1593.	5.6	4
36	Comfort and Perceived Air Quality in Refurbished Social Houses with Mechanical Ventialtion System: The Impact of Occupants Behaviour. Energy Procedia, 2015, 78, 2887-2892.	1.8	3

GIUSEPPE EMMI

#	Article	IF	CITATIONS
37	Double source heat pump: A case study. , 2018, , .		3
38	Retrofit solutions for an historic building integrated with geothermal heat pumps. E3S Web of Conferences, 2019, 111, 03055.	0.5	1
39	Two software tools for facilitating the choice of ground source heat pumps by stakeholders and designers. E3S Web of Conferences, 2019, 111, 06023.	0.5	1
40	A new air handling unit system for residential buildings: experiment and simulation-based analysis. IOP Conference Series: Materials Science and Engineering, 2019, 609, 052033.	0.6	1
41	ulti-Source Heat Pump Coupled with a Photovoltaic Thermal (PVT) Hybrid Solar Collectors Technology: a Case Study in Residential Application. International Journal of Energy Production and Management, 2016, 1, 382-392.	3.7	1
42	Archetype definition for analysing retrofit solutions in urban areas in Europe. E3S Web of Conferences, 2019, 111, 03027.	0.5	0
43	Primary air treatment vs energy saving: comparison between different design solutions. IOP Conference Series: Materials Science and Engineering, 2019, 609, 052001.	0.6	0