Giuseppe Palleschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4417890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics, 2006, 21, 1405-1423.	10.1	528
2	Carbon Nanotube Purification:Â Preparation and Characterization of Carbon Nanotube Paste Electrodes. Analytical Chemistry, 2003, 75, 5413-5421.	6.5	524
3	Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors and Bioelectronics, 2003, 18, 165-174.	10.1	314
4	Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC - Trends in Analytical Chemistry, 2016, 79, 114-126.	11.4	303
5	A review on novel developments and applications of immunosensors in food analysis. Analytica Chimica Acta, 2007, 605, 111-129.	5.4	299
6	A review of experimental aspects of electrochemical immunosensors. Electrochimica Acta, 2012, 84, 74-83.	5.2	269
7	Construction and Analytical Characterization of Prussian Blue-Based Carbon Paste Electrodes and Their Assembly as Oxidase Enzyme Sensors. Analytical Chemistry, 2001, 73, 2529-2535.	6.5	227
8	Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Analytica Chimica Acta, 2006, 580, 155-162.	5.4	226
9	Low Doses of Pristine and Oxidized Single-Wall Carbon Nanotubes Affect Mammalian Embryonic Development. ACS Nano, 2011, 5, 4624-4633.	14.6	201
10	Recent advances in biosensors based on enzyme inhibition. Biosensors and Bioelectronics, 2016, 76, 180-194.	10.1	180
11	Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosensors and Bioelectronics, 2007, 22, 1434-1440.	10.1	170
12	Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. Analytica Chimica Acta, 2016, 919, 78-84.	5.4	156
13	An electrochemical immunosensor for aflatoxin M1 determination in milk using screen-printed electrodes. Biosensors and Bioelectronics, 2005, 21, 588-596.	10.1	150
14	Bismuth-modified electrodes for lead detection. TrAC - Trends in Analytical Chemistry, 2010, 29, 1295-1304.	11.4	141
15	Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Mikrochimica Acta, 2010, 170, 193-214.	5.0	140
16	New electrochemical sensors for detection of nitrites and nitrates. Journal of Electroanalytical Chemistry, 2001, 509, 66-72.	3.8	137
17	How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta, 2017, 959, 15-42.	5.4	133
18	Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosensors and Bioelectronics, 2017, 93, 46-51.	10.1	129

#	Article	IF	CITATIONS
19	Enzyme electrodes with improved mechanical and analytical characteristics obtained by binding enzymes to nylon nets. Analytica Chimica Acta, 1983, 146, 135-148.	5.4	125
20	Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability. Analytica Chimica Acta, 2003, 485, 111-120.	5.4	121
21	Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors. Sensors and Actuators B: Chemical, 2004, 100, 117-125.	7.8	119
22	Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon, 2010, 48, 2596-2602.	10.3	119
23	Nanostructured (Bio)sensors for smart agriculture. TrAC - Trends in Analytical Chemistry, 2018, 98, 95-103.	11.4	115
24	Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Analytical and Bioanalytical Chemistry, 2005, 383, 597-604.	3.7	114
25	Screenâ€Printed Electrodes Modified with Carbon Nanomaterials: A Comparison among Carbon Black, Carbon Nanotubes and Graphene. Electroanalysis, 2015, 27, 2230-2238.	2.9	112
26	High performance electrochemical sensor based on modified screen-printed electrodes with cost-effective dispersion of nanostructured carbon black. Electrochemistry Communications, 2010, 12, 346-350.	4.7	111
27	Carbon Blackâ€Modified Screenâ€Printed Electrodes as Electroanalytical Tools. Electroanalysis, 2012, 24, 743-751.	2.9	111
28	Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors and Actuators B: Chemical, 2013, 179, 201-208.	7.8	110
29	Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat. Talanta, 2006, 69, 1031-1037.	5.5	108
30	Single-Wall Carbon Nanotube Paste Electrodes: a Comparison with Carbon Paste, Platinum and Glassy Carbon Electrodes via Cyclic Voltammetric Data. Electroanalysis, 2004, 16, 1451-1458.	2.9	105
31	Characterisation of Prussian blue modified screen-printed electrodes for thiol detection. Journal of Electroanalytical Chemistry, 2004, 563, 229-237.	3.8	102
32	Acetylcholinesterase biosensor based on single-walled carbon nanotubes—Co phtalocyanine for organophosphorus pesticides detection. Talanta, 2011, 85, 216-221.	5.5	97
33	Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochemistry Communications, 2015, 60, 78-82.	4.7	95
34	Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochimica Acta, 2011, 56, 4209-4215.	5.2	93
35	Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System. Environmental Science & Technology, 2015, 49, 7934-7939.	10.0	92
36	The electrochemical detection of ammonia in drinking water based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes. Sensors and Actuators B: Chemical, 2007, 128, 326-333.	7.8	91

#	Article	IF	CITATIONS
37	A study of interferences in glucose measurements in blood by hydrogen peroxide based glucose probes. Analytical Biochemistry, 1986, 159, 114-121.	2.4	90
38	Development of a bio-electrochemical assay for AFB1 detection in olive oil. Biosensors and Bioelectronics, 2009, 24, 1962-1968.	10.1	89
39	Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Mikrochimica Acta, 2015, 182, 643-651.	5.0	88
40	A lactate electrode with lactate oxidase immobilized on nylon net for blood serum samples in flow systems. Analytica Chimica Acta, 1984, 157, 45-51.	5.4	87
41	Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Analytical and Bioanalytical Chemistry, 2007, 388, 1049-1057.	3.7	87
42	Using Triplex-Forming Oligonucleotide Probes for the Reagentless, Electrochemical Detection of Double-Stranded DNA. Analytical Chemistry, 2010, 82, 9109-9115.	6.5	87
43	Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex. Talanta, 2015, 141, 267-272.	5.5	87
44	Surface chemistry effects on the performance of an electrochemical DNA sensor. Bioelectrochemistry, 2009, 76, 208-213.	4.6	86
45	Investigation of amperometric detection of phosphate. Talanta, 2004, 63, 567-574.	5.5	83
46	Uricase biosensor based on a screen-printed electrode modified with Prussian blue for detection of uric acid in human blood serum. Sensors and Actuators B: Chemical, 2013, 179, 170-174.	7.8	83
47	Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta, 2018, 179, 186-192.	5.5	83
48	Electrochemical immunosensor for determination of aflatoxin B1 in barley. Analytica Chimica Acta, 2004, 520, 159-164.	5.4	81
49	Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite. Sensors and Actuators B: Chemical, 2015, 212, 536-543.	7.8	81
50	Enzymatic Spectrophotometric Method for Aflatoxin B Detection Based on Acetylcholinesterase Inhibition. Analytical Chemistry, 2007, 79, 3409-3415.	6.5	80
51	Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles. Sensors, 2014, 14, 14222-14234.	3.8	80
52	Quality evaluation of peaches and nectarines by electrochemical and multivariate analyses: relationships between analytical measurements and sensory attributes. Food Chemistry, 1997, 60, 659-666.	8.2	77
53	Determinants of the Detection Limit and Specificity of Surface-Based Biosensors. Analytical Chemistry, 2013, 85, 6593-6597.	6.5	77
54	Stripping Analysis of As(III) by Means of Screenâ€Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite. Electroanalysis, 2014, 26, 931-939.	2.9	76

#	Article	IF	CITATIONS
55	Aflatoxin M1 determination in raw milk using a flow-injection immunoassay system. Analytica Chimica Acta, 2004, 520, 141-148.	5.4	74
56	Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosensors and Bioelectronics, 2010, 25, 2615-2621.	10.1	70
57	Phosphate, Nitrate, and Sulfate Biosensors. Analytical Letters, 2004, 37, 1-19.	1.8	69
58	Comparison of PCR, Electrochemical Enzyme-Linked Immunosorbent Assays, and the Standard Culture Method for Detecting Salmonella in Meat Products. Applied and Environmental Microbiology, 2004, 70, 1393-1396.	3.1	68
59	Disposable immunosensor for the determination of domoic acid in shellfish. Biosensors and Bioelectronics, 2004, 20, 190-196.	10.1	67
60	A reagent-free paper-based sensor embedded in a 3D printing device for cholinesterase activity measurement in serum. Sensors and Actuators B: Chemical, 2018, 258, 1015-1021.	7.8	67
61	Novel planar glucose biosensors for continuous monitoring use. Biosensors and Bioelectronics, 2005, 20, 1993-2000.	10.1	66
62	Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides. Analytical and Bioanalytical Chemistry, 2003, 377, 624-631.	3.7	65
63	Electroanalytical Characterization of Carbon Black Nanomaterial Paste Electrode: Development of Highly Sensitive Tyrosinase Biosensor for Catechol Detection. Analytical Letters, 2010, 43, 1688-1702.	1.8	64
64	Carbon Paste Electrode Bulk-Modified with the Conducting Polymer Poly(1,8-Diaminonaphthalene): Application to Lead Determination. Mikrochimica Acta, 2003, 143, 195-204.	5.0	62
65	Iron(III) protoporphyrin IX—single-wall carbon nanotubes modified electrodes for hydrogen peroxide and nitrite detection. Electrochimica Acta, 2006, 51, 6435-6441.	5.2	62
66	Electrochemical Biosensors for Rapid Detection of Foodborne Salmonella: A Critical Overview. Sensors, 2017, 17, 1910.	3.8	62
67	Electroanalytical Study of Prussian Blue Modified Glassy Carbon Paste Electrodes. Electroanalysis, 2003, 15, 1204-1211.	2.9	61
68	A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications. Biosensors and Bioelectronics, 2007, 22, 854-862.	10.1	61
69	Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. Journal of Electroanalytical Chemistry, 2009, 626, 66-74.	3.8	59
70	Rapid Assay of Choline in Foods Using Microwave Hydrolysis and a Choline Biosensor. Journal of Agricultural and Food Chemistry, 2000, 48, 3403-3407.	5.2	58
71	Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue. Electrochimica Acta, 2008, 53, 2161-2169.	5.2	56
72	Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta, 2018, 188, 50-57.	5.5	56

#	Article	IF	CITATIONS
73	Detection of Aflatoxin B1in Barley: Comparative Study of Immunosensor and HPLC. Analytical Letters, 2006, 39, 1559-1572.	1.8	55
74	Cardiac autonomic regulation after lung exposure to carbon nanotubes. Human and Experimental Toxicology, 2009, 28, 369-375.	2.2	55
75	Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sensors and Actuators B: Chemical, 2015, 221, 187-190.	7.8	55
76	Development of a disposable biosensor for lactate monitoring in saliva. Sensors and Actuators B: Chemical, 2016, 237, 8-15.	7.8	55
77	A label-free impedimetric aptasensor for the detection of Bacillus anthracis spore simulant. Biosensors and Bioelectronics, 2019, 126, 640-646.	10.1	55
78	The NADH Electrochemical Detection Performed at Carbon Nanofibers Modified Glassy Carbon Electrode. Electroanalysis, 2007, 19, 1455-1459.	2.9	53
79	Microengine-assisted electrochemical measurements at printable sensor strips. Chemical Communications, 2015, 51, 8668-8671.	4.1	52
80	Heat-treated milk differentiation by a sensitive lactulose assay. Food Chemistry, 2004, 84, 447-450.	8.2	51
81	Rapid determination of lactulose in milk by microdialysis and biosensors. Analyst, The, 1999, 124, 325-329.	3.5	49
82	An ELIME-array for detection of aflatoxin B1 in corn samples. Food Control, 2009, 20, 371-375.	5.5	48
83	Development of an Electrochemical Immunosensor for Ochratoxin A. Analytical Letters, 2004, 37, 1545-1558.	1.8	47
84	Lead Determination by Anodic Stripping Voltammetry Using ap-Phenylenediamine Modified Carbon Paste Electrode. Electroanalysis, 2005, 17, 685-693.	2.9	47
85	Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination. Analytica Chimica Acta, 2007, 594, 1-8.	5.4	47
86	Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection. Analytica Chimica Acta, 2011, 707, 171-177.	5.4	46
87	Production of antibodies and development of highly sensitive formats of enzyme immunoassay for saxitoxin analysis. Analytical and Bioanalytical Chemistry, 2002, 373, 678-684.	3.7	45
88	Electrochemical biosensors for monitoring malolactic fermentation in red wine using two strains of Oenococcus oeni. Analytica Chimica Acta, 2004, 513, 357-364.	5.4	45
89	Determination of choline-containing phospholipids in human bile and serum by a new enzyme sensor. Clinica Chimica Acta, 1985, 151, 71-83.	1.1	44
90	Oxidase enzyme immobilisation through electropolymerised films to assemble biosensors for batch and flow injection analysis. Biosensors and Bioelectronics, 2003, 18, 689-698.	10.1	44

#	Article	IF	CITATIONS
91	Chemical compounds and sensory assessment of kiwifruit (Actinidia chinensis (Planch.) var.) Tj ETQq1 1 0.784314	1 rgBT 8:2	/Overlock 10 Tf
92	Electrosynthesis of poly-o-diaminobenzene on the Prussian Blue modified electrodes for improvement of hydrogen peroxide transducer characteristics. Bioelectrochemistry, 2002, 55, 145-148.	4.6	43
93	Glutathione amperometric detection based on a thiol–disulfide exchange reaction. Analytica Chimica Acta, 2006, 558, 164-170.	5.4	43
94	A disposable immunosensor for detection of 17β-estradiol in non-extracted bovine serum. Analytica Chimica Acta, 2006, 572, 11-16.	5.4	42
95	Amperometric biosensor for determination of lactate in sweat. Analytica Chimica Acta, 1993, 278, 35-40.	5.4	41
96	Extraction and Detection of Pesticides by Cholinesterase Inhibition in a Twoâ€Phase System: a Strategy to Avoid Heavy Metal Interference. Analytical Letters, 2005, 38, 1703-1719.	1.8	41
97	Toward continuous glucose monitoring with planar modified biosensors and microdialysis. Biosensors and Bioelectronics, 2007, 22, 2032-2039.	10.1	41
98	Employing the Metabolic "Branch Point Effect―to Generate an All-or-None, Digital-like Response in Enzymatic Outputs and Enzyme-Based Sensors. Analytical Chemistry, 2012, 84, 1076-1082.	6.5	41
99	A liver tissue-based electrochemical sensor for hydrogen peroxide. Analytica Chimica Acta, 1982, 138, 65-69.	5.4	40
100	A flow-through detector for simultaneous determination of glucose and urea in serum samples. Analytica Chimica Acta, 1983, 145, 213-217.	5.4	40
101	Reversible Enzyme Inhibition–Based Biosensors: Applications and Analytical Improvement Through Diagnostic Inhibition. Analytical Letters, 2009, 42, 1258-1293.	1.8	40
102	Direct Electrochemistry of Heme Proteins on Electrodes Modified with Didodecyldimethyl Ammonium Bromide and Carbon Black. Electroanalysis, 2012, 24, 1923-1931.	2.9	40
103	Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2â^' detection. Electrochimica Acta, 2012, 63, 37-46.	5.2	40
104	Probe accessibility effects on the performance of electrochemical biosensors employing DNA monolayers. Analytical and Bioanalytical Chemistry, 2012, 402, 413-421.	3.7	40
105	Enhanced performances of sensors based on screen printed electrodes modified with nanosized NiO particles. Electrochimica Acta, 2017, 246, 580-587.	5.2	40
106	Ammonia abatement in an enzymatic flow system for the determination of creatinine in blood sera and urine. Analytica Chimica Acta, 1985, 171, 175-184.	5.4	39
107	Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Analytical and Bioanalytical Chemistry, 2016, 408, 7299-7309.	3.7	38
108	Determination of creatinine in clinical samples with a creatininase reactor and an ammonia probe. Analytica Chimica Acta, 1982, 136, 69-76.	5.4	37

#	Article	IF	CITATIONS
109	Amperometric Nitric Oxide Sensors: a Comparative Study. Electroanalysis, 1998, 10, 1010-1016.	2.9	37
110	A disposable biosensor for the determination of alpha-amylase in human saliva. Mikrochimica Acta, 2010, 170, 243-249.	5.0	37
111	A new enzymatic spectrophotometric assay for the determination of lactulose in milk. Analytica Chimica Acta, 2000, 406, 217-224.	5.4	36
112	New bio-cleaning strategies on porous building materials affected by biodeterioration event. Applied Surface Science, 2010, 256, 6550-6563.	6.1	36
113	Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals. Analytica Chimica Acta, 2012, 751, 161-170.	5.4	36
114	Part two: Analytical optimisation of a procedure for lead detection in milk by means of bismuth-modified screen-printed electrodes. Analytica Chimica Acta, 2012, 736, 92-99.	5.4	36
115	GlucoMen Day Continuous Glucose Monitoring System: A Screening for Enzymatic and Electrochemical Interferents. Journal of Diabetes Science and Technology, 2012, 6, 1172-1181.	2.2	35
116	New cleaning strategies based on carbon nanomaterials applied to the deteriorated marble surfaces: A comparative study with enzyme based treatments. Applied Surface Science, 2012, 258, 5965-5980.	6.1	35
117	Bienzyme Amperometric Probes for Choline and Choline Esters Assembled with Nonconducting Electrosynthesized Polymers. Electroanalysis, 2001, 13, 236-242.	2.9	33
118	Determination of lactate in human saliva with an electrochemical enzyme probe. Analytica Chimica Acta, 1991, 245, 151-157.	5.4	32
119	Determination of mercury(II), methylmercury and ethylmercury in the ng/ml range with an electrochemical enzyme glucose probe. Mikrochimica Acta, 1995, 121, 183-190.	5.0	32
120	Prussian Blue Modified Carbon Nanotube Paste Electrodes: A Comparative Study and a Biochemical Application. Analytical Letters, 2003, 36, 1921-1938.	1.8	32
121	Quantitative, reagentless, single-step electrochemical detection of anti-DNA antibodies directly in blood serum. Chemical Communications, 2010, 46, 1742.	4.1	32
122	Analytical aspects of enzyme reversible inhibition. Talanta, 2014, 118, 368-374.	5.5	32
123	Porphyrin-based array of cross-selective electrodes for analysis of liquid samples. Sensors and Actuators B: Chemical, 2003, 95, 400-405.	7.8	31
124	Development of an Immunomagnetic Electrochemical Sensor for Detection of BT RY1AB/CRY1AC Proteins in Genetically Modified Corn Samples. Analytical Letters, 2006, 39, 1599-1609.	1.8	31
125	Antimicrobial and Biosensing Ultrasound-Responsive Lysozyme-Shelled Microbubbles. ACS Applied Materials & amp; Interfaces, 2013, 5, 464-471.	8.0	31
126	A bienzyme electrochemical probe for flow injection analysis of okadaic acid based on protein phosphatase-2A inhibition: An optimization study. Analytical Biochemistry, 2009, 385, 50-56.	2.4	30

#	Article	IF	CITATIONS
127	Development and Application of an Electrochemical Plate Coupled with Immunomagnetic Beads (ELIME) Array for Salmonella enterica Detection in Meat Samples. Journal of Agricultural and Food Chemistry, 2009, 57, 7200-7204.	5.2	30
128	Aflatoxin M1 determination and stability study in milk samples using a screen-printed 96-well electrochemical microplate. International Dairy Journal, 2009, 19, 753-758.	3.0	30
129	Carbon black nanoparticles to sense algae oxygen evolution for herbicides detection: Atrazine as a case study. Biosensors and Bioelectronics, 2020, 159, 112203.	10.1	30
130	AMPEROMETRIC DETECTION OF BIOGENIC AMINES IN CHEESE USING IMMOBILISED DIAMINE OXIDASE. Analytical Letters, 2001, 34, 841-854.	1.8	29
131	Nonconducting polymers on Prussian Blue modified electrodes: improvement of selectivity and stability of the advanced H/sub 2/O/sub 2/ transducer. IEEE Sensors Journal, 2003, 3, 326-332.	4.7	29
132	Functionalization and Dissolution of Single-Walled Carbon Nanotubes by Chemical-Physical and Electrochemical Treatments. Mikrochimica Acta, 2006, 152, 225-232.	5.0	29
133	Amperometric lysine bioprobes analysis in feeds. Talanta, 1993, 40, 1301-1306.	5.5	28
134	Detection of Biogenic Amines in Human Saliva Using a Screen-Printed Biosensor. Analytical Letters, 2010, 43, 1310-1316.	1.8	28
135	Re-modeling ELISA kits embedded in an automated system suitable for on-line detection of algal toxins in seawater. Sensors and Actuators B: Chemical, 2019, 283, 865-872.	7.8	28
136	In vivo continuous monitoring of L-lactate coupling subcutaneous microdialysis and an electrochemical biocell. Sensors and Actuators B: Chemical, 1995, 24, 138-141.	7.8	27
137	Synthesis and characterization of polymeric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water. Sensors and Actuators B: Chemical, 2007, 122, 236-242.	7.8	27
138	Investigation of the Effect of Different Glassy Carbon Materials on the Performance of Prussian Blue Based Sensors for Hydrogen Peroxide. Electroanalysis, 2003, 15, 175-182.	2.9	26
139	Rapid and Selective Electrochemical Determination of Nitrite in Cured Meat in the Presence of Ascorbic Acid. Mikrochimica Acta, 2004, 147, 51.	5.0	26
140	Rapid and label-free detection of ochratoxin A and aflatoxin B1 using an optical portable instrument. Talanta, 2016, 150, 440-448.	5.5	26
141	Development of SYBRâ€Green Realâ€Time PCR and a Multichannel Electrochemical Immunosensor for Specific Detection ofSalmonella enterica. Analytical Letters, 2006, 39, 1611-1625.	1.8	25
142	Rapid Screening Electrochemical Methods for Aflatoxin B1and Typeâ€A Trichothecenes: A Preliminary Study. Analytical Letters, 2007, 40, 1333-1346.	1.8	25
143	Characterization of Graphene Nanoribbons from the Unzipping of MWCNTs. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 261-272.	2.1	25
144	Development of a competitive immunoassay for the determination of cortisol in human saliva. Analytical Biochemistry, 2013, 434, 308-314.	2.4	25

#	Article	IF	CITATIONS
145	Automatable Flow System for Paraoxon Detection with an Embedded Screen-Printed Electrode Tailored with Butyrylcholinesterase and Prussian Blue Nanoparticles. Chemosensors, 2015, 3, 129-145.	3.6	25
146	Characterisation of archaeological wood: A case study on the deterioration of a coffin. Microchemical Journal, 2009, 92, 150-154.	4.5	24
147	Determination of l-amino acids and alcohols with oxidase enzymes and a tubular iodide-selective electrode. Analytica Chimica Acta, 1978, 100, 215-221.	5.4	23
148	Amperometric alcohol electrode with extended linearity and reduced interferences. Analytical Biochemistry, 1991, 198, 97-103.	2.4	23
149	Towards a Portable Prototype Based on Electrochemical Cholinesterase Biosensor to be Assembled to Soldier Overall for Nerve Agent Detection. Electroanalysis, 2012, 24, 581-590.	2.9	23
150	Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chemical Science, 2017, 8, 914-920.	7.4	23
151	Combining a hydrogel and an electrochemical biosensor to determine the extent of degradation of paper artworks. Analytical and Bioanalytical Chemistry, 2012, 403, 1485-1489.	3.7	20
152	Development and Comparative Evaluation of Different Screening Methods for Detection of Staphylococcus aureus. Analytical Letters, 2005, 38, 1569-1586.	1.8	19
153	Ex Vivo Continuous Glucose Monitoring With Microdialysis Technique: The Example of GlucoDay. IEEE Sensors Journal, 2008, 8, 63-70.	4.7	19
154	In-line determination of metabolites and milk components with electrochemical biosensors. Analytica Chimica Acta, 1988, 213, 101-111.	5.4	18
155	Development of a diagnostic and cleaning tool for paper artworks: a case of study. Microchemical Journal, 2016, 126, 32-41.	4.5	18
156	Ideal hydrogen peroxide-based glucose sensor. Applied Biochemistry and Biotechnology, 1991, 31, 21-35.	2.9	17
157	Electropolymerized Architecture Entrapping a Trilacunary Keggin-Type Polyoxometalate for Assembling a Glucose Biosensor. Electroanalysis, 2002, 14, 1550-1556.	2.9	17
158	Methodological strategies to assess the degree of bone preservation for ancient DNA studies. Annals of Human Biology, 2015, 42, 10-19.	1.0	17
159	Direct electrochemical detection of trichothecenes in wheat samples using a 96-well electrochemical plate coupled with microwave hydrolysis. World Mycotoxin Journal, 2009, 2, 239-245.	1.4	16
160	pH Electrode -Based Enzyme Immunoassay for the Determination of Human Chorionic Gonadotropin. Analytical Letters, 1982, 15, 101-113.	1.8	15
161	Thermal Properties, Raman Spectroscopy and Tem Images of Neutron-Bombarded Graphite. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 634-643.	2.1	15
162	Limitations in the Analytical Use of Invertase Inhibition for the Screening of Trace Mercury Content in Environmental Samples. Analytical Sciences, 2004, 20, 899-904.	1.6	14

#	Article	IF	CITATIONS
163	A whole cell optical bioassay for the detection of chemical warfare mustard agent simulants. Sensors and Actuators B: Chemical, 2018, 257, 658-665.	7.8	14
164	Versatile hydrogels: an efficient way to clean paper artworks. RSC Advances, 2013, 3, 22896.	3.6	13
165	Rheoreversible hydrogels in paper restoration processes: a versatile tool. Chemistry Central Journal, 2014, 8, 10.	2.6	13
166	A Choline Oxidase Amperometric Bioassay for the Detection of Mustard Agents Based on Screen-Printed Electrodes Modified with Prussian Blue Nanoparticles. Sensors, 2015, 15, 4353-4367.	3.8	13
167	Iridium oxide (IV) nanoparticle-based electrocatalytic detection of PBDE. Biosensors and Bioelectronics, 2019, 127, 150-154.	10.1	13
168	Receptors for organochlorine pesticides based on calixarenes. Mikrochimica Acta, 2008, 163, 195-202.	5.0	12
169	Sensing the Lactic Acid in Probiotic Yogurts Using an L-Lactate Biosensor Coupled with a Microdialysis Fiber Inserted in a Flow Analysis System. Analytical Letters, 2010, 43, 1301-1309.	1.8	12
170	Towards the development of a single-step immunosensor based on an electrochemical screen-printed electrode strip coupled with immunomagnetic beads. Analytical and Bioanalytical Chemistry, 2013, 405, 655-663.	3.7	12
171	Determination of serum cholinesterase activity and dibucaine numbers by an amperometric choline sensor. Biosensors and Bioelectronics, 1990, 5, 27-35.	10.1	11
172	Immunodetection of lactosylated proteins as a useful tool to determine heat treatment in milk samples. Analyst, The, 2001, 126, 66-70.	3.5	10
173	Development and Application of a Two-Phase Clean-Up System in Food Samples Prior to Fluorescence Analysis of Aflatoxins. Mikrochimica Acta, 2006, 153, 101-108.	5.0	9
174	AFB1–AP Conjugate for Enzyme Immunoassay of Aflatoxin B1in Corn Samples. Analytical Letters, 2009, 42, 1170-1186.	1.8	9
175	Titanium Carbide Thin-Film Electrodes: Characterization and Evaluation as Working Electrodes. Electroanalysis, 2004, 16, 1704-1710.	2.9	8
176	Changes in Cardiac Autonomic Regulation after Acute Lung Exposure to Carbon Nanotubes: Implications for Occupational Exposure. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	7
177	Electrochemical investigation of the interaction between lysozyme-shelled microbubbles and vitamin C. Analytical and Bioanalytical Chemistry, 2013, 405, 5531-5538.	3.7	7
178	Validation of a 1-Day Analytical Diagnostic Real-Time PCR for the Detection of Salmonella in Different Food Meat Categories. Food Analytical Methods, 2013, 6, 996-1003.	2.6	7
179	Investigation of glycated protein assay for assessing heat treatment effect in food samples and protein–sugar models. Food Chemistry, 2006, 96, 485-490.	8.2	6
180	Electrochemical Biosensors for Chemical Warfare Agents. Advanced Sciences and Technologies for Security Applications, 2016, , 115-139.	0.5	6

#	Article	IF	CITATIONS
181	Extracorporeal determination of glucose, lactate and potassium with electrochemical biosensors. Journal of Pharmaceutical and Biomedical Analysis, 1989, 7, 1377-1383.	2.8	5
182	Interaction between single wall carbon nanotubes and a human enteric virus. Journal of Virological Methods, 2010, 168, 1-5.	2.1	5
183	Nanomaterials applied in medicine, cultural heritage and chemical sensor technology. International Journal of Nanotechnology, 2013, 10, 508.	0.2	5
184	Realâ€Time Monitoring of Hydrogen Peroxide Consumption in an Oxidation Reaction in Molecular Solvent and Ionic Liquids by a Hydrogen Peroxide Electrochemical Sensor. ChemSusChem, 2011, 4, 792-796.	6.8	4
185	Fabrication Routes of Microsized Electrochemical Biosensors Based on Single-Walled Carbon Nanotubes. Materials Science Forum, 2007, 539-543, 1098-1103.	0.3	3
186	Chapter 24 Mediated enzyme screen-printed electrode probes for clinical, environmental and food analysis. Comprehensive Analytical Chemistry, 2007, 49, 559-584.	1.3	3
187	Stable dispersions of single-walled carbon nanotubes. International Journal of Environment and Health, 2009, 3, 285.	0.3	3
188	ELIME (Enzyme Linked Immuno Magnetic Electrochemical) Method for Mycotoxin Detection. Journal of Visualized Experiments, 2009, , .	0.3	3
189	How to extend range linearity in enzyme inhibition-based biosensing assays. Talanta, 2018, 189, 365-369.	5.5	3
190	Carbon Black/Gold Nanoparticles Composite for Efficient Amperometric Sensors. Lecture Notes in Electrical Engineering, 2015, , 159-163.	0.4	2
191	Development of Sensors to Trace Toxins from Dinoflagellates and Other Algae to Seafood. NATO Science for Peace and Security Series A: Chemistry and Biology, 2008, , 301-310.	0.5	1
192	Report on the 3rd Workshop of the European Union Concerted Action—Evaluation/Validation of Novel Biosensors in Real Environmental and Food Samples, Maó, Menorca (Balearic Island), Spain, November 2–4, 2003. Analytical Letters, 2004, 37, 1259-1267.	1.8	0
193	Kinetics in analytical chemistry. Analytical and Bioanalytical Chemistry, 2005, 381, 1321-1322.	3.7	0
194	Report on the 8th International Symposium on Kinetics in Analytical Chemistry Rome, Italy, July 8–10, 2004. Analytical Letters, 2005, 38, 195-201.	1.8	0
195	Procedure 17 Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors. Comprehensive Analytical Chemistry, 2007, , e119-e124.	1.3	0
196	The Fourth International Workshop on Biosensors for Food Safety and Environmental Monitoring. Mikrochimica Acta, 2010, 170, 191-192.	5.0	0
197	NANOSTRUCTURED-BASED SENSORS FOR ANALYTICAL APPLICATIONS. , 2008, , .		0
198	NEW STRATEGIES TO ASSEMBLE SELECTIVE AND SENSITIVE SENSORS FOR DETECTION OF NITRITES. , 2008, , .		0