Kai Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4417868/publications.pdf

Version: 2024-02-01

516710 713466 21 751 16 21 citations h-index g-index papers 21 21 21 538 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete. Construction and Building Materials, 2018, 175, 467-482.	7.2	89
2	Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes. Journal of Hazardous Materials, 2017, 321, 281-289.	12.4	77
3	Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement. Construction and Building Materials, 2017, 132, 290-295.	7.2	70
4	Immobilization of Cr(VI) by hydrated Portland cement pastes with and without calcium sulfate. Journal of Hazardous Materials, 2018, 342, 242-251.	12.4	56
5	Establishment of a preconditioning regime for air permeability and sorptivity of alkali-activated slag concrete. Cement and Concrete Composites, 2016, 73, 19-28.	10.7	55
6	Setting behaviours and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China. Cement and Concrete Composites, 2020, 114, 103782.	10.7	53
7	Characterisation of pore structure development of alkali-activated slag cement during early hydration using electrical responses. Cement and Concrete Composites, 2018, 89, 139-149.	10.7	49
8	An alternative admixture to reduce sorptivity of alkali-activated slag cement by optimising pore structure and introducing hydrophobic film. Cement and Concrete Composites, 2019, 95, 183-192.	10.7	48
9	Deterioration of mortars exposed to sulfate attack under electrical field. Construction and Building Materials, 2016, 117, 121-128.	7.2	38
10	Investigation of effects of Portland cement fineness and alkali content on concrete plastic shrinkage cracking. Construction and Building Materials, 2017, 144, 279-290.	7.2	36
11	Chemical and physical effects of high-volume limestone powder on sodium silicate-activated slag cement (AASC). Construction and Building Materials, 2021, 292, 123257.	7.2	31
12	Characteristics of the steel-concrete interface and their effect on the corrosion of steel bars in concrete. Construction and Building Materials, 2020, 253, 119162.	7.2	27
13	The long-term failure mechanisms of alkali-activated slag mortar exposed to wet-dry cycles of sodium sulphate. Cement and Concrete Composites, 2021, 116, 103893.	10.7	26
14	First structural use of site-cast, alkali-activated slag concrete in China. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2018, 171, 800-809.	0.8	21
15	A comparative study on shrinkage characteristics of graphene oxide (GO) and graphene nanoplatelets (GNPs) modified alkali-activated slag cement composites. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	21
16	The role of calcium stearate on regulating activation to form stable, uniform and flawless reaction products in alkali-activated slag cement. Cement and Concrete Composites, 2019, 103, 242-251.	10.7	20
17	Synthesis and Characterization of Different Crystalline Calcium Silicate Hydrate: Application for the Removal of Aflatoxin B1 from Aqueous Solution. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	13
18	Understanding the aqueous phases of alkali-activated slag paste under water curing. Advances in Cement Research, 2021, 33, 59-73.	1.6	13

#	Article	IF	CITATIONS
19	Characterisation of temporal variations of alkali-activated slag cement property using microstructure features and electrical responses. Construction and Building Materials, 2020, 261, 119884.	7.2	4
20	Estimates of concrete transport properties by a two pressure water test. Magazine of Concrete Research, 2016, 68, 530-540.	2.0	3
21	Using calciumâ€rich precursors to improve the earlyâ€compressive strength of alkaliâ€activated slag cement at low temperature. Structural Concrete, 2022, 23, 2221-2232.	3.1	1