Jean-Pierre Lorand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4417021/publications.pdf

Version: 2024-02-01

			53794	5	56724
	82	7,011	45		83
	papers	citations	h-index		g-index
Ξ					
	86	86	86		3360
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile: COMMENT. Geology, 2022, 50, e550-e550.	4.4	1
2	Chalcophile-siderophile element systematics and regional-scale magmatic percolation in the Ronda peridotite massif (Spain). Lithos, 2021, 380-381, 105901.	1.4	3
3	Earth-like Habitable Environments in the Subsurface of Mars. Astrobiology, 2021, 21, 741-756.	3.0	27
4	The sulfur budget and sulfur isotopic composition of Martian regolith breccia NWA 7533. Meteoritics and Planetary Science, 2020, 55, 2097-2116.	1.6	8
5	Northwest Africa 8694, a ferroan chassignite: Bridging the gap between nakhlites and chassignites. Geochimica Et Cosmochimica Acta, 2020, 282, 201-226.	3.9	14
6	Genesis of a florencite-bearing kaolin deposit on ordovician schists at Saint-Aubin-des-Châteaux, Armorican Massif, France. Ore Geology Reviews, 2020, 120, 103445.	2.7	7
7	Caleta el Cobre 022 Martian meteorite: Increasing nakhlite diversity. Meteoritics and Planetary Science, 2020, 55, 1539-1563.	1.6	7
8	Selenium isotopes as tracers of a late volatile contribution to Earth from the outer Solar System. Nature Geoscience, 2019, 12, 779-782.	12.9	42
9	Chalcophile-siderophile element systematics of hydrothermal pyrite from martian regolith breccia NWA 7533. Geochimica Et Cosmochimica Acta, 2018, 241, 134-149.	3.9	20
10	Petrogenesis of martian sulfides in the Chassigny meteorite. American Mineralogist, 2018, 103, 872-885.	1.9	9
11	The geological record of base metal sulfides in the cratonic mantle: A microscale 187 Os/ 188 Os study of peridotite xenoliths from Somerset Island, Rae Craton (Canada). Geochimica Et Cosmochimica Acta, 2017, 216, 264-285.	3.9	30
12	Surface vitrification caused by natural fires in Late Pleistocene wetlands of the Atacama Desert. Earth and Planetary Science Letters, 2017, 469, 15-26.	4.4	17
13	The role of sulfides in the fractionation of highly siderophile and chalcophile elements during the formation of martian shergottite meteorites. Geochimica Et Cosmochimica Acta, 2017, 210, 1-24.	3.9	15
14	Regolith breccia Northwest Africa 7533: Mineralogy and petrology with implications for early Mars. Meteoritics and Planetary Science, 2017, 52, 89-124.	1.6	43
15	Nanoscale variations in 187 Os isotopic composition and HSE systematics in a Bultfontein peridotite. Earth and Planetary Science Letters, 2016, 447, 60-71.	4.4	15
16	Exsolution and shock microstructures of igneous pyroxene clasts in the Northwest Africa 7533 Martian meteorite. Meteoritics and Planetary Science, 2016, 51, 932-945.	1.6	13
17	Chalcophile and Siderophile Elements in Mantle Rocks: Trace Elements Controlled By Trace Minerals. Reviews in Mineralogy and Geochemistry, 2016, 81, 441-488.	4.8	129
18	Nickeliferous pyrite tracks pervasive hydrothermal alteration in Martian regolith breccia: A study in <scp>NWA</scp> 7533. Meteoritics and Planetary Science, 2015, 50, 2099-2120.	1.6	32

#	Article	IF	CITATIONS
19	Novodneprite (AuPb3), anyuiite [Au(Pb, Sb)2] and gold micro- and nano-inclusions within plastically deformed mantle-derived olivine from the Lherz peridotite (Pyrenees, France): a HRTEM–AEM–EELS study. Physics and Chemistry of Minerals, 2015, 42, 143-150.	0.8	15
20	Mineralogical control of selenium, tellurium and highly siderophile elements in the Earth's mantle: Evidence from mineral separates of ultra-depleted mantle residues. Chemical Geology, 2015, 396, 16-24.	3.3	21
21	Understanding Re–Os systematics and model ages in metamorphosed Archean ultramafic rocks: A single mineral to whole-rock investigation. Geochimica Et Cosmochimica Acta, 2015, 167, 205-240.	3.9	14
22	The Paris meteorite, the least altered CM chondrite so far. Geochimica Et Cosmochimica Acta, 2014, 124, 190-222.	3.9	163
23	A non-primitive origin of near-chondritic S–Se–Te ratios in mantle peridotites; implications for the Earth's late accretionary history. Earth and Planetary Science Letters, 2014, 385, 110-121.	4.4	48
24	Record of the ancient martian hydrosphere andÂatmosphere preserved in zircon from aÂmartianÂmeteorite. Nature Geoscience, 2014, 7, 638-642.	12.9	49
25	Trinepheline and fabriesite: two new mineral species from the jadeite deposit of Tawmaw (Myanmar). European Journal of Mineralogy, 2014, 26, 257-265.	1.3	7
26	Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature, 2013, 503, 513-516.	27.8	269
27	Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes. Contributions To Mineralogy and Petrology, 2013, 166, 1521-1538.	3.1	57
28	Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review. Lithos, 2013, 164-167, 2-21.	1.4	144
29	Opaque minerals, magnetic properties, and paleomagnetism of the Tissint Martian meteorite. Meteoritics and Planetary Science, 2013, 48, 1919-1936.	1.6	29
30	Selenium and tellurium systematics of the Earth's mantle from high precision analyses of ultra-depleted orogenic peridotites. Geochimica Et Cosmochimica Acta, 2012, 86, 354-366.	3.9	73
31	Metalâ€saturated sulfide assemblages in NWA 2737: Evidence for impactâ€related sulfur devolatilization in Martian meteorites. Meteoritics and Planetary Science, 2012, 47, 1830-1841.	1.6	20
32	In-situ geochemistry of sulfides in highly metasomatized mantle xenoliths from Kerguelen, southern Indian Ocean. Lithos, 2012, 154, 296-314.	1.4	52
33	Melt inclusions in augite from the nakhlite meteorites: A reassessment of nakhlite parental melt and implications for petrogenesis. Meteoritics and Planetary Science, 2012, 47, 330-344.	1.6	18
34	Sulfide petrology of four nakhlites: Northwest Africa 817, Northwest Africa 998, Nakhla, and Governador Valadares. Meteoritics and Planetary Science, 2011, 46, 769-784.	1.6	26
35	Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites. Mineralogy and Petrology, 2011, 101, 115-128.	1.1	24
36	Volatile-rich Metasomatism in Montferrier Xenoliths (Southern France): Implications for the Abundances of Chalcophile and Highly Siderophile Elements in the Subcontinental Mantle. Journal of Petrology, 2011, 52, 2009-2045.	2.8	107

#	Article	IF	CITATIONS
37	Petrogenesis of Fe–Ti oxides in amphibole-rich veins from the Lherz orogenic peridotite (Northeastern) Tj ETQq1	. <u>1</u> .0.7843	14 rgBT /0\ 18
38	Determination of selenium and tellurium concentrations in Pyrenean peridotites (Ariege, France): New insight into S/Se/Te systematics of the upper in mantle samples. Chemical Geology, 2010, 278, 120-130.	3.3	63
39	Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, France). Earth and Planetary Science Letters, 2010, 289, 298-310.	4.4	142
40	An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos, 2009, 112, 1096-1108.	1.4	65
41	Platinumâ€group element signature of the primitive mantle rejuvenated by meltâ€rock reactions: evidence from Sumail peridotites (Oman Ophiolite). Terra Nova, 2009, 21, 35-40.	2.1	48
42	Platinum-Group Elements: A New Set of Key Tracers for the Earth's Interior. Elements, 2008, 4, 247-252.	0.5	103
43	Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the south Peruvian potassic province. Lithos, 2008, 104, 54-70.	1.4	37
44	HRTEM-AEM-HAADF-STEM study of platinum-group elements within a mantle-derived Cr spinel (Lherz;) Tj ETQq0 0	0.rgBT/O	verlock 10
45	Abundance and distribution of platinum-group elements in orogenic lherzolites; a case study in a Fontete Rouge lherzolite (French Pyrénées). Chemical Geology, 2008, 248, 174-194.	3.3	101
46	Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochimica Et Cosmochimica Acta, 2007, 71, 3082-3097.	3.9	228
47	Highly siderophile element composition of the Earth's primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths. Geochimica Et Cosmochimica Acta, 2006, 70, 4528-4550.	3.9	506
48	Petrogenesis of base metal sulphide assemblages of some peridotites from the Kaapvaal craton (South) Tj ETQq0	0 _{3.1} rgBT /0	Oyerlock 10
49	Determination of Total Sulfur Contents in the International Rock Reference Material SY-2 and Other Mafic and Ultramafic Rocks Using an Improved Scheme of Combustion/Iodometric Titration. Geostandards and Geoanalytical Research, 2005, 29, 123-130.	1.9	20
50	In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature, 2005, 436, 1005-1008.	27.8	190
51	Sulfide mineralogy and redox conditions in some shergottites. Meteoritics and Planetary Science, 2005, 40, 1257-1272.	1.6	68
52	Matching Martian crustal magnetization and magnetic properties of Martian meteorites. Meteoritics and Planetary Science, 2005, 40, 529-540.	1.6	80
53	Platinum-group element systematics in Mid-Oceanic Ridge basaltic glasses from the Pacific, Atlantic, and Indian Oceans. Geochimica Et Cosmochimica Acta, 2005, 69, 2613-2627.	3.9	162
54	Destructive and non-destructive microanalysis of biocarbonates applied to anomalous otoliths of archaeological and modern sciaenids (Teleostei) from Peru and Chile. Comptes Rendus - Biologies, 2005, 328, 243-252.	0.2	16

#	Article	IF	Citations
55	Re–Os and S systematics of spinel peridotite xenoliths from east central China: Evidence for contrasting effects of melt percolation. Earth and Planetary Science Letters, 2005, 239, 286-308.	4.4	127
56	Asthenospheric metasomatism beneath the mid-ocean ridge: Evidence from depleted abyssal peridotites. Geology, 2004, 32, 301.	4.4	63
57	Reliability of Os model ages in pervasively metasomatized continental mantle lithosphere: a case study of Sidamo spinel peridotite xenoliths (East African Rift, Ethiopia). Chemical Geology, 2004, 208, 119-140.	3.3	74
58	A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, ltaly. Chemical Geology, 2004, 208, 175-194.	3.3	136
59	Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean). Chemical Geology, 2004, 208, 195-215.	3.3	95
60	Petrogenesis of a zirconolite-bearing Mediterranean-type lamproite from the Peruvian Altiplano (Andean Cordillera). Lithos, 2003, 69, 15-35.	1.4	28
61	Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK area, Atlantic Ocean). Geochimica Et Cosmochimica Acta, 2003, 67, 1553-1570.	3.9	209
62	Sulfur and selenium systematics of the subcontinental lithospheric mantle: Inferences from the Massif Central xenolith suite (France). Geochimica Et Cosmochimica Acta, 2003, 67, 4137-4151.	3.9	127
63	Platinum-group elements and melt percolation processes in Sidamo spinel peridotite xenoliths, Ethiopia, East African Rift. Chemical Geology, 2003, 196, 57-75.	3.3	96
64	Analysis of platinum group elements and gold in geological materials using NiS fire assay and Te coprecipitation; the NiS dissolution step revisited. Chemical Geology, 2002, 185, 179-190.	3.3	69
65	New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth and Planetary Science Letters, 2002, 203, 651-663.	4.4	212
66	Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochimica Et Cosmochimica Acta, 2001, 65, 1311-1323.	3.9	594
67	Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochimica Et Cosmochimica Acta, 2001, 65, 2789-2806.	3.9	246
68	Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism. Earth and Planetary Science Letters, 2001, 190, 1-12.	4.4	125
69	Petrogenesis of the amphibole-rich veins from the Lherz orogenic lherzolite massif (Eastern Pyrenees,) Tj ETQq1 1 lithospheric mantle. Contributions To Mineralogy and Petrology, 2001, 140, 383-403.	0.784314 3.1	4 rgBT /Over 37
70	Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology, 2001, 29, 155.	4.4	105
71	Highly siderophile element geochemistry of the Earth's mantle: new data for the Lanzo (Italy) and Ronda (Spain) orogenic peridotite bodies. Lithos, 2000, 53, 149-164.	1.4	57
72	Fractionation of Platinum-group Elements and Gold in the Upper Mantle: a Detailed Study in Pyrenean Orogenic Lherzolites. Journal of Petrology, 1999, 40, 957-981.	2.8	174

#	Article	IF	CITATIONS
73	Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics, 1998, 292, 145-167.	2.2	92
74	Reply to comment by S. Arai on "Primitive basaltic melts included in podiform chromites from the Oman ophiolite―by P. Schiano et al Earth and Planetary Science Letters, 1998, 156, 121-123.	4.4	1
75	First occurrence of diopside sanidine phlogopite lamproite in the Andean Cordillera: the Huacancha and Morojarja dikes, southern Peru. Canadian Journal of Earth Sciences, 1997, 34, 1118-1127.	1.3	13
76	Primitive basaltic melts included in podiform chromites from the Oman Ophiolite. Earth and Planetary Science Letters, 1997, 146, 489-497.	4.4	83
77	Petrology of an unusual orthopyroxene-bearing minette suite from southeastern Peru, Eastern Andean Cordillera: Al-rich lamproites contaminated by peraluminous granites. Journal of Volcanology and Geothermal Research, 1997, 75, 59-87.	2.1	33
78	Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature, 1995, 376, 159-162.	27.8	316
79	Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
80	Evidence for Modal Metasomatism in the Orogenic Spinel Lherzolite Body from Caussou (Northeastern Pyrenees, France). Journal of Petrology, 1989, 30, 199-228.	2.8	74
81	Petrology and Thermal History of Highly Deformed Mantle Xenoliths from the Montferrier Basanites, Languedoc, Southern France: A Comparison with Ultramafic Complexes from the North Pyrenean Zone. Journal of Petrology, 1987, 28, 887-919.	2.8	30
82	SULPHIDE PETROLOGY AND CONTRIBUTION OF SUBDUCTED SULPHUR IN DIAMONDIFEROUS GARNET-BEARING PYROXENITES FROM BENI BOUSERA (NORTHERN MOROCCO). Journal of Petrology, 0, , .	2.8	1