

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4416571/publications.pdf Version: 2024-02-01

Vue lin

#	Article	IF	CITATIONS
1	A unique race of the wheat stem rust pathogen with virulence on <i>Sr31</i> identified in Spain and reaction of wheat and durum cultivars to this race. Plant Pathology, 2022, 71, 873-889.	1.2	17
2	Development of a Diagnostic Assay for Differentiation Between Genetic Groups in Clades I, II, III, and IV of <i>Puccinia graminis</i> f. sp. <i>tritici</i> . Plant Disease, 2022, 106, 2211-2220.	0.7	4
3	Barberry plays an active role as an alternate host of <i>Puccinia graminis</i> in Spain. Plant Pathology, 2022, 71, 1174-1184.	1.2	6
4	Wheat Stem Rust Back in Europe: Diversity, Prevalence and Impact on Host Resistance. Frontiers in Plant Science, 2022, 13, .	1.7	26
5	Two Indigenous <i>Berberis</i> Species From Spain Were Confirmed as Alternate Hosts of the Yellow Rust Fungus <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Plant Disease, 2021, 105, 2281-2285.	0.7	7
6	Field resistance to wheat stem rust in durum wheat accessions deposited at the USDA National Small Grains Collection. Crop Science, 2021, 61, 2565-2578.	0.8	7
7	Function and evolution of allelic variations of <i>Sr13</i> conferring resistance to stem rust in tetraploid wheat (<i>Triticum turgidum</i> L.). Plant Journal, 2021, 106, 1674-1691.	2.8	15
8	Characterization of synthetic wheat line Largo for resistance to stem rust. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	7
9	Identification of Winter Habit Bread Wheat Landraces in the National Small Grains Collection with Resistance to Emerging Stem Rust Pathogen Variants. Plant Disease, 2021, , PDIS04210743RE.	0.7	1
10	Registration of hard white winter wheat germplasms KS14U6380R5, KS16U6380R10, and KS16U6380R11 with adult plant resistance to stem rust. Journal of Plant Registrations, 2020, 14, 210-216.	0.4	0
11	Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nature Communications, 2020, 11, 1123.	5.8	52
12	Mapping and Validation of Stem Rust Resistance Loci in Spring Wheat Line Cl 14275. Frontiers in Plant Science, 2020, 11, 609659.	1.7	17
13	Mapping and characterization of two stem rust resistance genes derived from cultivated emmer wheat accession PI 193883. Theoretical and Applied Genetics, 2019, 132, 3177-3189.	1.8	33
14	Presence of a Sexual Population of <i>Puccinia graminis</i> f. sp. <i>tritici</i> in Georgia Provides a Hotspot for Genotypic and Phenotypic Diversity. Phytopathology, 2019, 109, 2152-2160.	1.1	58
15	Characterization of Ethiopian Wheat Germplasm for Resistance to Four <i>Puccinia graminis</i> f. sp. <i>tritici</i> Races Facilitated by Single-Race Nurseries. Plant Disease, 2019, 103, 2359-2366.	0.7	18
16	Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics, 2019, 51, 1530-1539.	9.4	216
17	Identification of New Sources of Resistance to Wheat Stem Rust in Aegilops spp. in the Tertiary Genepool of Wheat. Frontiers in Plant Science, 2018, 9, 1719.	1.7	44
18	Genetic Diversity and Resistance to Fusarium Head Blight in Synthetic Hexaploid Wheat Derived From Aegilops tauschii and Diverse Triticum turgidum Subspecies. Frontiers in Plant Science, 2018, 9, 1829.	1.7	20

Yue Jin

#	Article	IF	CITATIONS
19	Genome-Wide Association Study for Identification and Validation of Novel SNP Markers for Sr6 Stem Rust Resistance Gene in Bread Wheat. Frontiers in Plant Science, 2018, 9, 380.	1.7	68
20	Genes for wheat stem rust resistance postulated in German cultivars and their efficacy in seedling and adultâ€plant field tests. Plant Breeding, 2018, 137, 301-312.	1.0	15
21	ldentification, mapping, and marker development of stem rust resistance genes in durum wheat †Lebsock'. Molecular Breeding, 2018, 38, 1.	1.0	19
22	Genotyping-by-Sequencing Facilitates a High-Density Consensus Linkage Map for <i>Aegilops umbellulata</i> , a Wild Relative of Cultivated Wheat. G3: Genes, Genomes, Genetics, 2017, 7, 1551-1561.	0.8	43
23	Physical mapping of DNA markers linked to stem rust resistance gene Sr47 in durum wheat. Theoretical and Applied Genetics, 2017, 130, 1135-1154.	1.8	10
24	Discovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates. G3: Genes, Genomes, Genetics, 2017, 7, 3481-3490.	0.8	40
25	Loss of <i>AvrSr50</i> by somatic exchange in stem rust leads to virulence for <i>Sr50</i> resistance in wheat. Science, 2017, 358, 1607-1610.	6.0	206
26	Insights into Tan Spot and Stem Rust Resistance and Susceptibility by Studying the Pre-Green Revolution Global Collection of Wheat. Plant Pathology Journal, 2017, 33, 125-132.	0.7	7
27	Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing. PLoS ONE, 2016, 11, e0155760.	1.1	107
28	Markers Linked to Wheat Stem Rust Resistance Gene <i>Sr11</i> Effective to <i>Puccinia graminis</i> f. sp. <i>tritici</i> Race TKTTF. Phytopathology, 2016, 106, 1352-1358.	1.1	69
29	Kenyan Isolates of <i>Puccinia graminis</i> f. sp. <i>tritici</i> from 2008 to 2014: Virulence to <i>SrTmp</i> in the Ug99 Race Group and Implications for Breeding Programs. Phytopathology, 2016, 106, 729-736.	1.1	110
30	Development and verification of wheat germplasm containing both Sr2 and Fhb1. Molecular Breeding, 2016, 36, 1.	1.0	32
31	Emergence and Spread of New Races of Wheat Stem Rust Fungus: Continued Threat to Food Security and Prospects of Genetic Control. Phytopathology, 2015, 105, 872-884.	1.1	393
32	Phenotypic and Genotypic Characterization of Race TKTTF of <i>Puccinia graminis</i> f. sp. <i>tritici</i> that Caused a Wheat Stem Rust Epidemic in Southern Ethiopia in 2013–14. Phytopathology, 2015, 105, 917-928.	1.1	202
33	Resistance to Race TTKSK of <i>Puccinia graminis</i> f. sp. <i>tritici</i> in Emmer Wheat. Crop Science, 2012, 52, 2234-2242.	0.8	16
34	Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2012, 125, 877-885.	1.8	84
35	The Emergence of Ug99 Races of the Stem Rust Fungus is a Threat to World Wheat Production. Annual Review of Phytopathology, 2011, 49, 465-481.	3.5	612
36	Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. Euphytica, 2011, 179, 105-108.	0.6	55

Yue Jin

#	Article	IF	CITATIONS
37	International surveillance of wheat rust pathogens: progress and challenges. Euphytica, 2011, 179, 109-117.	0.6	74
38	Stem Rust Resistance in <i>Aegilops tauschii</i> Germplasm. Crop Science, 2011, 51, 2074-2078.	0.8	72
39	Century-Old Mystery of <i>Puccinia striiformis</i> Life History Solved with the Identification of <i>Berberis</i> as an Alternate Host. Phytopathology, 2010, 100, 432-435.	1.1	282
40	Genetic Maps of Stem Rust Resistance Gene <i>Sr35</i> in Diploid and Hexaploid Wheat. Crop Science, 2010, 50, 2464-2474.	0.8	51
41	Identification and Evaluation of Sources of Resistance to Stem Rust Race Ug99 in Wheat. Plant Disease, 2010, 94, 413-419.	0.7	70
42	Chromosomal Locations of Genes for Stem Rust Resistance in Monogenic Lines Derived from Tetraploid Wheat Accession ST464. Crop Science, 2007, 47, 1441-1450.	0.8	40
43	Registration of â€~Infinity CL' Wheat. Crop Science, 2006, 46, 975-977.	0.8	16