Mingwang Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4416553/publications.pdf

Version: 2024-02-01

103 papers 4,664 citations

39 h-index 63 g-index

103 all docs

103
docs citations

103 times ranked

4985 citing authors

#	Article	IF	CITATIONS
1	A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nature Communications, 2016, 7, 12272.	5.8	272
2	Excellent Photocatalysis of HF-Treated Silicon Nanowires. Journal of the American Chemical Society, 2009, 131, 17738-17739.	6.6	209
3	A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nature Communications, 2021, 12, 483.	5.8	193
4	RhMoS ₂ Nanocomposite Catalysts with Ptâ€Like Activity for Hydrogen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1700359.	7.8	185
5	Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 2018, 136, 94-102.	5.4	182
6	High capacitance and rate capability of a Ni ₃ S ₂ @CdS core–shell nanostructure supercapacitor. Journal of Materials Chemistry A, 2017, 5, 7165-7172.	5.2	132
7	One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 2018, 10, 12734-12742.	2.8	128
8	Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Applied Catalysis B: Environmental, 2020, 278, 119289.	10.8	110
9	Network-like mesoporous NiCo ₂ O ₄ grown on carbon cloth for high-performance pseudocapacitors. Journal of Materials Chemistry A, 2015, 3, 16520-16527.	5.2	107
10	Approaching the Volcano Top: Iridium/Silicon Nanocomposites as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ACS Nano, 2019, 13, 2786-2794.	7.3	106
11	Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries. Nanoscale, 2017, 9, 18977-18982.	2.8	92
12	High-performance NiO/g-C ₃ N ₄ composites for visible-light-driven photocatalytic overall water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1646-1652.	3.0	92
13	Phosphorus-doped porous carbon nitride for efficient sole production of hydrogen peroxide <i>via</i> photocatalytic water splitting with a two-channel pathway. Journal of Materials Chemistry A, 2020, 8, 3701-3707.	5.2	89
14	Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Applied Catalysis B: Environmental, 2021, 289, 120035.	10.8	84
15	Ir/g-C ₃ N ₄ /Nitrogen-Doped Graphene Nanocomposites as Bifunctional Electrocatalysts for Overall Water Splitting in Acidic Electrolytes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39161-39167.	4.0	80
16	Highly Efficient Oxygen Evolution by a Thermocatalytic Process Cascaded Electrocatalysis Over Sulfurâ€Treated Feâ€Based Metal–Organicâ€Frameworks. Advanced Energy Materials, 2020, 10, 2000184.	10.2	75
17	Carbon dots-Pt modified polyaniline nanosheet grown on carbon cloth as stable and high-efficient electrocatalyst for hydrogen evolution in pH-universal electrolyte. Applied Catalysis B: Environmental, 2019, 257, 117905.	10.8	74
18	Carbon Dots Derived from Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41088-41095.	4.0	74

#	Article	IF	CITATIONS
19	Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template. Nanoscale, 2017, 9, 10138-10144.	2.8	73
20	All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting. Chemical Engineering Journal, 2019, 358, 134-142.	6.6	71
21	A 4e-–2e- cascaded pathway for highly efficient production of H2 and H2O2 from water photo-splitting at normal pressure. Applied Catalysis B: Environmental, 2020, 270, 118875.	10.8	68
22	Rhodium Nanoparticles/F-Doped Graphene Composites as Multifunctional Electrocatalyst Superior to Pt/C for Hydrogen Evolution and Formic Acid Oxidation Reaction. ACS Applied Materials & Distribution (Interfaces, 2018, 10, 33153-33161.	4.0	63
23	Carbonâ€Dotâ€Based Whiteâ€Lightâ€Emitting Diodes with Adjustable Correlated Color Temperature Guided by Machine Learning. Angewandte Chemie - International Edition, 2021, 60, 12585-12590.	7.2	60
24	Carbon Dots Enhance the Nitrogen Fixation Activity of Azotobacter Chroococcum. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16308-16314.	4.0	57
25	Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass: <i>Artemisia argyi</i> leaves. Journal of Materials Chemistry B, 2020, 8, 2666-2672.	2.9	57
26	Ru-modified silicon nanowires as electrocatalysts for hydrogen evolution reaction. Electrochemistry Communications, 2015, 52, 29-33.	2.3	56
27	Maltase Decorated by Chiral Carbon Dots with Inhibited Enzyme Activity for Glucose Level Control. Small, 2019, 15, e1901512.	5.2	56
28	Ultraâ∈Bright and Stable Pure Blue Lightâ€Emitting Diode from O, N Coâ€Doped Carbon Dots. Laser and Photonics Reviews, 2021, 15, 2000412.	4.4	54
29	Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure. Chemical Engineering Journal, 2021, 409, 128184.	6.6	54
30	Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. Journal of Materials Chemistry A, 2021, 9, 515-522.	5.2	53
31	Pyrrolic nitrogen dominated the carbon dot mimic oxidase activity. Carbon, 2021, 179, 692-700.	5.4	50
32	Silicon Nanowires with Permanent Electrostatic Charges for Nanogenerators. Nano Letters, 2011, 11, 4870-4873.	4.5	49
33	Chiral Control of Carbon Dots via Surface Modification for Tuning the Enzymatic Activity of Glucose Oxidase. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5877-5886.	4.0	48
34	Pristine Carbon Dots Boost the Growth of <i>Chlorella vulgaris</i> by Enhancing Photosynthesis. ACS Applied Bio Materials, 2018, 1, 894-902.	2.3	45
35	Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. Journal of Energy Chemistry, 2022, 66, 61-67.	7.1	45
36	Robust carbon-dot-based evaporator with an enlarged evaporation area for efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 14566-14573.	5.2	44

3

#	Article	IF	CITATIONS
37	Improved Energy Storage Performance Based on Gamma-Ray Irradiated Activated Carbon Cloth. Electrochimica Acta, 2016, 191, 908-915.	2.6	42
38	Synergistic Cu@CoOx core-cage structure on carbon layers as highly active and durable electrocatalysts for methanol oxidation. Applied Catalysis B: Environmental, 2019, 244, 795-801.	10.8	42
39	In-situ photovoltage transients assisted catalytic study on H2O2 photoproduction over organic molecules modified carbon nitride photocatalyst. Applied Catalysis B: Environmental, 2021, 285, 119817.	10.8	42
40	A function-switchable metal-free photocatalyst for the efficient and selective production of hydrogen and hydrogen peroxide. Journal of Materials Chemistry A, 2020, 8, 11773-11780.	5.2	42
41	Polyaniline/Carbon Dots Composite as a Highly Efficient Metal-Free Dual-Functional Photoassisted Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 24814-24823.	4.0	41
42	In-situ transient photovoltage study on interface electron transfer regulation of carbon dots/NiCo2O4 photocatalyst for the enhanced overall water splitting activity. Nano Research, 2022, 15, 1786-1795.	5.8	41
43	Os/Si nanocomposites as excellent hydrogen evolution electrocatalysts with thermodynamically more favorable hydrogen adsorption free energy than platinum. Nano Energy, 2017, 39, 284-290.	8.2	40
44	Strain engineering for Janus palladium-gold bimetallic nanoparticles: Enhanced electrocatalytic performance for oxygen reduction reaction and zinc-air battery. Chemical Engineering Journal, 2020, 389, 124240.	6.6	40
45	A stepwise-designed Rh-Au-Si nanocomposite that surpasses Pt/C hydrogen evolution activity at high overpotentials. Nano Research, 2017, 10, 1749-1755.	5.8	37
46	Carbon Dots Enable Efficient Delivery of Functional DNA in Plants. ACS Applied Bio Materials, 2020, 3, 8857-8864.	2.3	33
47	Optimizing the hydrogen evolution reaction by shrinking Pt amount in Pt-Ag/SiNW nanocomposites. International Journal of Hydrogen Energy, 2017, 42, 15024-15030.	3.8	31
48	Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Research, 2021, 14, 3886-3892.	5.8	31
49	Determining Locations of Conduction Bands and Valence Bands of Semiconductor Nanoparticles Based on Their Band Gaps. ACS Omega, 2020, 5, 10297-10300.	1.6	30
50	One-dimensional CdS $<$ sub $>$ x $<$ /sub $>$ Se $<$ sub $>$ 1 \hat{a} ^'x $<$ /sub $>$ nanoribbons for high-performance rigid and flexible photodetectors. Journal of Materials Chemistry C, 2017, 5, 7521-7526.	2.7	29
51	PbS Quantum Dots/2D Nonlayered CdS <i>_x</i> Se _{1â€"<i>x</i>} Nanosheet Hybrid Nanostructure for High-Performance Broadband Photodetectors. ACS Applied Materials & Discount of the American State of the	4.0	29
52	Engineering CoN/Ni(OH)2 heterostructures with improved intrinsic interfacial charge transfer toward simultaneous hydrogen generation and urea-rich wastewater purification. Journal of Power Sources, 2020, 480, 229151.	4.0	29
53	Highly efficient water splitting over a RuO ₂ /F-doped graphene electrocatalyst with ultra-low ruthenium content. Inorganic Chemistry Frontiers, 2020, 7, 2188-2194.	3.0	29
54	Rh–Ag–Si ternary composites: highly active hydrogen evolution electrocatalysts over Pt–Ag–Si. Journal of Materials Chemistry A, 2017, 5, 1623-1628.	5.2	28

#	Article	IF	Citations
55	Biotoxicity of degradable carbon dots towards microalgae <i>Chlorella vulgaris</i> . Environmental Science: Nano, 2019, 6, 3316-3323.	2.2	28
56	Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation. International Journal of Hydrogen Energy, 2020, 45, 16071-16079.	3.8	27
57	Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Research, 2022, 15, 4000-4007.	5 . 8	26
58	Visible-light-enhanced gas sensing of CdSxSe1â^'x nanoribbons for acetic acid at room temperature. Sensors and Actuators B: Chemical, 2015, 215, 497-503.	4.0	25
59	Palladium – silicon nanocomposites as a stable electrocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2018, 522, 242-248.	5.0	25
60	Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance. Nanoscale, 2020, 12, 17925-17930.	2.8	25
61	Tree-inspired ultra-rapid steam generation and simultaneous energy harvesting under weak illumination. Journal of Materials Chemistry A, 2020, 8, 10260-10268.	5.2	25
62	Carbon dots/PtW6O24 composite as efficient and stable electrocatalyst for hydrogen oxidation reaction in PEMFCs. Chemical Engineering Journal, 2021, 426, 130709.	6.6	25
63	Rh/RhO _{<i>x</i>} nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions. Journal of Materials Chemistry A, 2022, 10, 1891-1898.	5. 2	25
64	Rhodium/silicon quantum dot/carbon quantum dot composites as highly efficient electrocatalysts for hydrogen evolution reaction with Pt-like performance. Electrochimica Acta, 2019, 299, 828-834.	2.6	24
65	Quasi-layer Co ₂ P-polarized Cu ₃ P nanocomposites with enhanced intrinsic interfacial charge transfer for efficient overall water splitting. Nanoscale, 2019, 11, 6394-6400.	2.8	23
66	Carbon dots/Bi2WO6 composite with compensatory photo-electronic effect for overall water photo-splitting at normal pressure. Chinese Chemical Letters, 2021, 32, 2283-2286.	4.8	23
67	Mesocrystal PtRu supported on reduced graphene oxide as catalysts for methanol oxidation reaction. Journal of Colloid and Interface Science, 2019, 557, 729-736.	5.0	22
68	Simple Semiempirical Method for the Location Determination of HOMO and LUMO of Carbon Dots. Journal of Physical Chemistry C, 2021, 125, 7451-7457.	1.5	22
69	Metal-Free Catalyst with Large Carbon Defects for Efficient Direct Overall Water Splitting in Air at Room Pressure. ACS Applied Materials & Interfaces, 2020, 12, 30280-30288.	4.0	21
70	Powerful synergy: efficient Pt–Au–Si nanocomposites as state-of-the-art catalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 21903-21908.	5.2	19
71	Quantitative evaluation of synergistic effects for Pt nanoparticles embedded in N-enriched carbon matrix as an efficient and durable catalyst for the hydrogen evolution reaction and their PEMWE performance. International Journal of Hydrogen Energy, 2019, 44, 31121-31128.	3.8	19
72	The self-activation and synergy of amorphous Re nanoparticle $\hat{a}\in$ Si nanowire composites for the electrocatalytic hydrogen evolution. Electrochimica Acta, 2017, 228, 268-273.	2.6	18

#	Article	IF	Citations
73	Rod-shaped α-MnO2 electrocatalysts with high Mn3+ content for oxygen reduction reaction and Zn-air battery. Journal of Alloys and Compounds, 2021, 860, 158427.	2.8	17
74	Silicon monoxide assisted synthesis of Ru modified carbon nanocomposites as high mass activity electrocatalysts for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 11817-11823.	3.8	16
75	Functionalization of metal oxides with thiocyanate groups: A general strategy for boosting oxygen evolution reaction in neutral media. Nano Energy, 2020, 76, 105079.	8.2	16
76	Effective Low-Temperature Methanol Aqueous Phase Reforming with Metal-Free Carbon Dots/C ₃ N ₄ Composites. ACS Applied Materials & Interfaces, 2021, 13, 24702-24709.	4.0	16
77	Electric field polarized sulfonated carbon dots/NiFe layerd double hydroxide as highly efficient electrocatalyst for oxygen evolution reaction. Chemical Engineering Journal, 2021, 420, 129690.	6.6	16
78	Silicon nanowires decorated with gold nanoparticles <i>via in situ</i> reduction for photoacoustic imaging-guided photothermal cancer therapy. Journal of Materials Chemistry B, 2019, 7, 4393-4401.	2.9	15
79	Irâ€Au Bimetallic Nanoparticle Modified Silicon Nanowires with Ultralow Content of Ir for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 2126-2130.	1.8	15
80	Pd Nanoparticles with Twin Structures on Fâ€Doped Graphene for Formic Acid Oxidation. ChemCatChem, 2020, 12, 504-509.	1.8	15
81	Two-Dimensional Confined Synthesis of Metastable 1T-Phase MoS ₂ Nanosheets for the Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 1377-1384.	2.4	15
82	Diluted silicon promoting Pd/Pt catalysts for oxygen reduction reaction with strong anti-poisoning effect. Applied Catalysis B: Environmental, 2022, 315, 121549.	10.8	15
83	Unusual Effect of Trace Water on the Structure and Activity of Ni x Co 1â° x Electrocatalysts for the Methanol Oxidation Reaction. ChemSusChem, 2020, 13, 964-973.	3.6	14
84	Rhodium/graphitic-carbon-nitride composite electrocatalyst facilitates efficient hydrogen evolution in acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2020, 571, 30-37.	5.0	14
85	Palladium–Copper Bimetallic Nanoparticles Loaded on Carbon Black for Oxygen Reduction and Zinc–Air Batteries. ACS Applied Nano Materials, 2021, 4, 1478-1484.	2.4	12
86	A carbon dotâ€based total green and selfâ€recoverable solidâ€state electrochemical cell fully utilizing O ₂ /H ₂ O redox couple. SusMat, 2021, 1, 448-457.	7.8	12
87	Nanosponge Pt Modified Graphene Nanocomposites Using Silicon Monoxides as a Reducing Agent: High Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 15238-15244.	3.2	11
88	Photoluminescence of pure silicon quantum dots embedded in an amorphous silica wire array. Journal of Materials Chemistry C, 2017, 5, 6713-6717.	2.7	10
89	All-in-one photocatalysis device for one-step high concentration H2O2 photoproduction. Chemical Engineering Journal, 2022, 427, 131972.	6.6	10
90	Prominent electrocatalytic methanol oxidation from cauli-flower shape gold with high-index facets. Materials Chemistry and Physics, 2017, 186, 301-304.	2.0	9

#	Article	IF	CITATIONS
91	Sensitive detection of clenbuterol by hybrid iridium/silicon nanowire-enhanced laser desorption/ionization mass spectrometry. Journal of Materials Chemistry B, 2020, 8, 7792-7800.	2.9	8
92	Carbonâ€Dotâ€Based Whiteâ€Lightâ€Emitting Diodes with Adjustable Correlated Color Temperature Guided by Machine Learning. Angewandte Chemie, 2021, 133, 12693-12698.	1.6	8
93	Carbon dots bridge NiO and Mn2O3 as highly efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Applied Surface Science, 2022, 596, 153642.	3.1	8
94	ZIF/Co-C ₃ N ₄ with enhanced electrocatalytic reduction of carbon dioxide activity by the photoactivation process. Nanoscale, 2021, 13, 14089-14095.	2.8	7
95	Pd Nanoparticles/F, N Codoping Graphene Composites for Oxygen Reduction and Zinc-Air Batteries. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6
96	Sulfhydryl-functionalized carbon dots modified ball cactus-like Au composites facilitating the electrocatalytic ethanol oxidation through adsorption effect. Journal of Applied Electrochemistry, 2020, 50, 925-933.	1.5	6
97	Carbon Dots Promote the Performance of Anodized Nickel Passivation Film on Ethanol Oxidation by Enhancing Oxidation of the Intermediate â€. Chinese Journal of Chemistry, 2021, 39, 1199-1204.	2.6	5
98	Surface fluorinated nickel-graphene nanocomposites for high-efficiency methanol electrooxidation. International Journal of Hydrogen Energy, 2021, 46, 27138-27148.	3.8	5
99	Boosting electrocatalytic selectivity in carbon dioxide reduction: The fundamental role of dispersing gold nanoparticles on silicon nanowires. Chinese Chemical Letters, 2022, 33, 4380-4384.	4.8	5
100	Highly crystalline core dominated the catalytic performance of carbon dot for cyclohexane to adipic acid reaction. Nano Research, 2022, 15, 7662-7669.	5.8	5
101	One-Step Direct Fixation of Atmospheric CO2 by Si-H Surface in Solution. IScience, 2020, 23, 100806.	1.9	3
102	Interfacial engineered PdRu/C with robust poison tolerance for oxygen reduction reaction and zinc-air battery. Journal of Alloys and Compounds, 2022, 896, 163112.	2.8	3
103	Ternary Os-Ag-Si electrocatalysts for hydrogen evolution are more efficient than Os-Au-Si. Journal of Colloid and Interface Science, 2019, 539, 257-262.	5.0	2