
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4416485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic and Reprocessable Fluorinated Poly(hindered urea) Network Materials Containing Ionic Liquids to Enhance Triboelectric Performance. ACS Applied Materials & Interfaces, 2022, 14, 17806-17817.	8.0	10
2	Perfluorocarbon Nanodroplets for Dual Delivery with Ultrasound/CSH-Responsive Release of Model Drug and Passive Release of Nitric Oxide. Polymers, 2022, 14, 2240.	4.5	4
3	Self-healable triboelectric nanogenerators based on ionic poly(hindered urea) network materials cross-linked with fluorinated block copolymers. Polymer Chemistry, 2022, 13, 4343-4351.	3.9	6
4	Imidazoleâ€Mediated Dual Location Disassembly of Acidâ€Degradable Intracellular Drug Delivery Block Copolymer Nanoassemblies. Macromolecular Rapid Communications, 2021, 42, e2100262.	3.9	10
5	Macromolecularly Engineered Thermoreversible Heterogeneous Selfâ€Healable Networks Encapsulating Reactive Multidentate Block Copolymerâ€Stabilized Carbon Nanotubes. Macromolecular Rapid Communications, 2021, 42, e2000514.	3.9	6
6	Designing Ultrasmall Carbon Nanospheres with Tailored Sizes and Textural Properties for High-Rate High-Energy Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 32916-32929.	8.0	16
7	Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer, 2021, 230, 124024.	3.8	21
8	Dynamic Covalent Polyurethane Network Materials: Synthesis and Selfâ€Healability. Macromolecular Rapid Communications, 2021, 42, e2100391.	3.9	35
9	Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 177-190.	8.0	19
10	Electrospun Upconverting Nanofibrous Hybrids with Smart NIR-Light-Controlled Drug Release for Wound Dressing. ACS Applied Bio Materials, 2020, 3, 7219-7227.	4.6	20
11	Carbonylimidazole-hydroxyl coupling chemistry: Synthesis and block copolymerization of fully bio-reducible poly(carbonate-disulfide)s. Polymer, 2020, 206, 122793.	3.8	0
12	Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery. ACS Biomaterials Science and Engineering, 2020, 6, 5069-5083.	5.2	13
13	Dual-Location Dual-Acid/Glutathione-Degradable Cationic Micelleplexes through Hydrophobic Modification for Enhanced Gene Silencing. Molecular Pharmaceutics, 2020, 17, 3979-3989.	4.6	8
14	Direct Polymerization Approach to Synthesize Acidâ€Degradable Block Copolymers Bearing Imine Pendants for Tunable pHâ€Sensitivity and Enhanced Release. Macromolecular Rapid Communications, 2020, 41, 2000394.	3.9	6
15	Self-Healable Reprocessable Triboelectric Nanogenerators Fabricated with Vitrimeric Poly(hindered) Tj ETQq1 1 0	.784314 r 14.6	gBJ_/Overloc
16	Reactive Multidentate Block Copolymer Stabilization to Carbon Nanotubes for Thermoreversible Cross-Linked Network Gels. ACS Applied Polymer Materials, 2020, 2, 2319-2326.	4.4	5
17	Synthesis of degradable PLA-based diblock copolymers with dual acid/reduction-cleavable junction. Polymer, 2020, 194, 122391.	3.8	9
18	Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polymer Chemistry, 2020, 11, 2934-2954.	3.9	39

#	Article	IF	CITATIONS
19	Dual Reduction/Acid-Responsive Disassembly and Thermoresponsive Tunability of Degradable Double Hydrophilic Block Copolymer. ACS Omega, 2020, 5, 3734-3742.	3.5	14
20	Tumor-targeting intracellular drug delivery based on dual acid/reduction-degradable nanoassemblies with ketal interface and disulfide core locations. Polymer Chemistry, 2019, 10, 2840-2853.	3.9	20
21	Magnetic Photoluminescent Nanoplatform Built from Large-Pore Mesoporous Silica. Chemistry of Materials, 2019, 31, 3201-3210.	6.7	34
22	Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polymer Chemistry, 2019, 10, 1554-1568.	3.9	37
23	Multifunctional Self-Assembled Supernanoparticles for Deep-Tissue Bimodal Imaging and Amplified Dual-Mode Heating Treatment. ACS Nano, 2019, 13, 408-420.	14.6	68
24	Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. Langmuir, 2018, 34, 3316-3325.	3.5	18
25	Superparamagnetic Iron Oxide Nanoparticles Stabilized with Multidentate Block Copolymers for Optimal Vascular Contrast inT1-Weighted Magnetic Resonance Imaging. ACS Applied Nano Materials, 2018, 1, 894-907.	5.0	28
26	An Integrated Multifunctional Nanoplatform for Deepâ€Tissue Dualâ€Mode Imaging. Advanced Functional Materials, 2018, 28, 1706235.	14.9	32
27	Thermally Labile Selfâ€Healable Branched Gel Networks Fabricated by New Macromolecular Engineering Approach Utilizing Thermoreversibility. Macromolecular Rapid Communications, 2018, 39, 1700575.	3.9	13
28	Bioimaging: An Integrated Multifunctional Nanoplatform for Deepâ€Tissue Dualâ€Mode Imaging (Adv.) Tj ETQq	000 rgBT 14.9	/Oyerlock 10
29	PLAâ€Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations. Macromolecular Rapid Communications, 2018, 39, e1800477.	3.9	12
30	Multidentate Block Copolymer Stabilization: A Versatile Strategy for Colloidal Superparamagnetic Iron Oxide Nanoparticles Exhibiting Excellent Colloidal Stability and Enhanced Positive MRI Visualization. ACS Symposium Series, 2018, , 107-128.	0.5	0
31	Dual disassembly and biological evaluation of enzyme/oxidation-responsive polyester-based nanoparticulates for tumor-targeting delivery. Colloids and Surfaces B: Biointerfaces, 2018, 172, 608-617.	5.0	12
32	Facile Strategies to Synthesize Dual Location Dual Acidic pH/Reduction-Responsive Degradable Block Copolymers Bearing Acetal/Disulfide Block Junctions and Disulfide Pendants. ACS Omega, 2018, 3, 8980-8991.	3.5	11
33	Multiblock Copolymer-Based Dual Dynamic Disulfide and Supramolecular Crosslinked Self-Healing Networks. Macromolecular Rapid Communications, 2017, 38, 1600777.	3.9	27
34	Intracellular Delivery of Colloidally Stable Core-Cross-Linked Triblock Copolymer Micelles with Glutathione-Responsive Enhanced Drug Release for Cancer Therapy. Molecular Pharmaceutics, 2017, 14, 2518-2528.	4.6	24
35	Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2067-2077.	3.3	69
36	Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Molecular Pharmaceutics, 2017, 14, 2460-2474.	4.6	69

#	Article	IF	CITATIONS
37	Ambient temperature induced Diels–Alder crosslinked networks based on controlled methacrylate copolymers for enhanced thermoreversibility and self-healability. RSC Advances, 2017, 7, 26496-26506.	3.6	16
38	A new reactive polymethacrylate bearing pendant furfuryl groups: Synthesis, thermoreversible reactions, and self-healing. Polymer, 2017, 109, 58-65.	3.8	32
39	Well-defined methacrylate copolymer having reactive maleimide pendants for fabrication of thermally-labile crosslinked networks with robust self-healing. Materials Today Communications, 2017, 13, 241-247.	1.9	3
40	Polymers in Drug Delivery: Chemistry and Applications. Molecular Pharmaceutics, 2017, 14, 2459-2459.	4.6	14
41	Dual Location, Dual Acidic pH/Reduction-Responsive Degradable Block Copolymer: Synthesis and Investigation of Ketal Linkage Instability under ATRP Conditions. Macromolecules, 2017, 50, 9427-9436.	4.8	22
42	Development and Investigation of Ultrastable PbS/CdS/ZnS Quantum Dots for Nearâ€Infrared Tumor Imaging. Particle and Particle Systems Characterization, 2017, 34, 1600242.	2.3	23
43	Phosphonated homopolymers and copolymers via ring opening metathesis polymerization: <i>T</i> _g tuning, flame resistance, and photolithography. Journal of Polymer Science Part A, 2016, 54, 1396-1408.	2.3	10
44	Reduction-Responsive Sheddable Carbon Nanotubes Dispersed in Aqueous Solution. Macromolecular Rapid Communications, 2016, 37, 705-710.	3.9	7
45	Thermoreversible Selfâ€Healing Networks Based on a Tunable Polymethacrylate Crossslinker Having Pendant Maleimide Groups. Macromolecular Chemistry and Physics, 2016, 217, 2191-2198.	2.2	17
46	Photo-induced thiol-ene crosslinked polymethacrylate networks reinforced with Al2O3 nanoparticles. Polymer, 2016, 101, 119-126.	3.8	7
47	Extremely Small Iron Oxide Nanoparticles Stabilized with Catecholâ€Functionalized Multidentate Block Copolymer for Enhanced MRI. ChemistrySelect, 2016, 1, 4087-4091.	1.5	9
48	Rosin-based block copolymer intracellular delivery nanocarriers with reduction-responsive sheddable coronas for cancer therapy. Polymer Chemistry, 2016, 7, 4751-4760.	3.9	27
49	Free radical nano scavenger based on amphiphilic novolacs. RSC Advances, 2015, 5, 95666-95673.	3.6	6
50	Dual Sulfide–Disulfide Crosslinked Networks with Rapid and Room Temperature Selfâ€Healability. Macromolecular Rapid Communications, 2015, 36, 1255-1260.	3.9	83
51	Macromol. Rapid Commun. 13/2015. Macromolecular Rapid Communications, 2015, 36, 1300-1300.	3.9	0
52	Dual Location Dual Reduction/Photoresponsive Block Copolymer Micelles: Disassembly and Synergistic Release. Macromolecular Rapid Communications, 2015, 36, 1742-1748.	3.9	18
53	Macromol. Rapid Commun. 19/2015. Macromolecular Rapid Communications, 2015, 36, 1772-1772.	3.9	0
54	Enhanced encapsulation of superparamagnetic Fe ₃ O ₄ in acidic core-containing micelles for magnetic resonance imaging. RSC Advances, 2015, 5, 107938-107948.	3.6	4

#	Article	IF	CITATIONS
55	Reductively-sheddable cationic nanocarriers for dual chemotherapy and gene therapy with enhanced release. Colloids and Surfaces B: Biointerfaces, 2015, 126, 178-187.	5.0	21
56	Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer, 2015, 72, 387-394.	3.8	50
57	Scratch and recovery characteristics of automotive clearcoats containing blocked polyisocyanate crosslinkers. Journal of Coatings Technology Research, 2015, 12, 85-95.	2.5	8
58	Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2015, 133, 246-253.	5.0	36
59	Recent strategies to develop self-healable crosslinked polymeric networks. Chemical Communications, 2015, 51, 13058-13070.	4.1	98
60	Mussel-Inspired Multidentate Block Copolymer to Stabilize Ultrasmall Superparamagnetic Fe3O4 for Magnetic Resonance Imaging Contrast Enhancement and Excellent Colloidal Stability. Chemistry of Materials, 2015, 27, 7100-7109.	6.7	28
61	Dual Location Reduction-Responsive Degradable Nanocarriers: A New Strategy for Intracellular Anticancer Drug Delivery with Accelerated Release. ACS Symposium Series, 2015, , 273-291.	0.5	7
62	Chain Length Effect of the Multidentate Block Copolymer Strategy to Stabilize Ultrasmall Fe ₃ O ₄ Nanoparticles. ChemPlusChem, 2014, 79, 1342-1351.	2.8	8
63	Tuning amphiphilicity/temperatureâ€induced selfâ€assembly and inâ€situ disulfide crosslinking of reductionâ€responsive block copolymers. Journal of Polymer Science Part A, 2014, 52, 2057-2067.	2.3	9
64	Functional amphiphilic oligo(ethylene oxide) methacrylateâ€based block copolymers: synthesis by an activator regenerated by electron transfer process for atom transfer radical polymerization and aqueous micellization. Polymer International, 2014, 63, 858-867.	3.1	6
65	Dual Redox and Thermoresponsive Double Hydrophilic Block Copolymers with Tunable Thermoresponsive Properties and Selfâ€Assembly Behavior. Macromolecular Rapid Communications, 2014, 35, 752-757.	3.9	30
66	Dual location disulfide degradable interlayer-crosslinked micelles with extended sheddable coronas exhibiting enhanced colloidal stability and rapid release. Polymer Chemistry, 2014, 5, 1637-1649.	3.9	55
67	Recent Strategies to Develop Polysaccharideâ€Based Nanomaterials for Biomedical Applications. Macromolecular Rapid Communications, 2014, 35, 1819-1832.	3.9	107
68	Air‧pun PLA Nanofibers Modified with Reductively Sheddable Hydrophilic Surfaces for Vascular Tissue Engineering: Synthesis and Surface Modification. Macromolecular Rapid Communications, 2014, 35, 447-453.	3.9	20
69	Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release. RSC Advances, 2014, 4, 229-237.	3.6	31
70	Photoâ€induced thiolâ€ene polysulfideâ€crosslinked materials with tunable thermal and mechanical properties. Journal of Polymer Science Part A, 2014, 52, 3060-3068.	2.3	8
71	Thiol-responsive hydrogel scaffolds for rapid change in thermoresponsiveness. RSC Advances, 2014, 4, 3699-3707.	3.6	9
72	Multidentate Block-Copolymer-Stabilized Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability for Magnetic Resonance Imaging. Biomacromolecules, 2014, 15, 2146-2156.	5.4	60

#	Article	IF	CITATIONS
73	Multifunctional linear methacrylate copolymer polyenes having pendant vinyl groups: Synthesis and photoinduced thiol-ene crosslinking polyaddition. Journal of Polymer Science Part A, 2014, 52, 572-581.	2.3	12
74	Glutathione-Triggered Disassembly of Dual Disulfide Located Degradable Nanocarriers of Polylactide-Based Block Copolymers for Rapid Drug Release. Biomacromolecules, 2014, 15, 3180-3189.	5.4	92
75	Synthesis and reduction-responsive disassembly of PLA-based mono-cleavable micelles. Colloids and Surfaces B: Biointerfaces, 2014, 122, 693-700.	5.0	28
76	A dual location stimuli-responsive degradation strategy of block copolymer nanocarriers for accelerated release. Chemical Communications, 2013, 49, 7534.	4.1	44
77	Thiol-responsive block copolymer nanocarriers exhibiting tunable release with morphology changes. Polymer Chemistry, 2013, 4, 351-359.	3.9	56
78	New Design of Thiolâ€Responsive Degradable Polylactideâ€Based Block Copolymer Micelles. Macromolecular Rapid Communications, 2013, 34, 163-168.	3.9	37
79	Intracellular Drug Delivery Nanocarriers of Glutathione-Responsive Degradable Block Copolymers Having Pendant Disulfide Linkages. Biomacromolecules, 2013, 14, 2103-2111.	5.4	118
80	New photoâ€induced thiolâ€ene crosslinked films based on linear methacrylate copolymer polythiols. Journal of Polymer Science Part A, 2013, 51, 2860-2868.	2.3	15
81	Synthesis and thiolâ€responsive degradation of polylactideâ€based block copolymers having disulfide junctions using ATRP and ROP. Journal of Polymer Science Part A, 2013, 51, 3071-3080.	2.3	31
82	pHâ€responsive destabilization and facile bioconjugation of new hydroxylâ€ŧerminated block copolymer micelles. Journal of Polymer Science Part A, 2013, 51, 1620-1629.	2.3	8
83	Rapidly thiol-responsive degradable block copolymer nanocarriers with facile bioconjugation. Polymer Chemistry, 2012, 3, 2138.	3.9	36
84	Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chemical Communications, 2012, 48, 7542.	4.1	332
85	Modulated morphologies and tunable thiol-responsive shedding of aqueous block copolymer aggregates. RSC Advances, 2012, 2, 8079.	3.6	20
86	New Design of Thiol-Responsive Degradable Block Copolymer Micelles as Controlled Drug Delivery Vehicles. ACS Symposium Series, 2012, , 287-302.	0.5	4
87	Rapid and Tunable Reductive Degradation of Disulfide‣abeled Polyesters. Macromolecular Chemistry and Physics, 2012, 213, 678-685.	2.2	15
88	Reductively degradable polyester-based block copolymers prepared by facile polycondensation and ATRP: synthesis, degradation, and aqueous micellization. Soft Matter, 2011, 7, 7441.	2.7	37
89	Biodegradable Block Copolymer Micelles with Thiol-Responsive Sheddable Coronas. Biomacromolecules, 2011, 12, 3819-3825.	5.4	95
90	Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter, 2011, 7, 5096.	2.7	267

#	Article	IF	CITATIONS
91	New Thiolâ€Responsive Monoâ€Cleavable Block Copolymer Micelles Labeled with Single Disulfides. Macromolecular Rapid Communications, 2011, 32, 1652-1657.	3.9	34
92	Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Progress in Polymer Science, 2011, 36, 168-189.	24.7	387
93	Surface modification of colloidal CdX-based quantum dots for biomedical applications. Journal of Materials Chemistry, 2010, 20, 8433.	6.7	57
94	Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science, 2009, 34, 1261-1282.	24.7	461
95	The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science, 2008, 33, 448-477.	24.7	1,419
96	Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Molecular Pharmaceutics, 0, , .	4.6	1