
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4416485/publications.pdf Version: 2024-02-01

NC KWON O

#	Article	IF	CITATIONS
1	The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science, 2008, 33, 448-477.	24.7	1,419
2	Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science, 2009, 34, 1261-1282.	24.7	461
3	Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Progress in Polymer Science, 2011, 36, 168-189.	24.7	387
4	Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chemical Communications, 2012, 48, 7542.	4.1	332
5	Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter, 2011, 7, 5096.	2.7	267
6	Intracellular Drug Delivery Nanocarriers of Glutathione-Responsive Degradable Block Copolymers Having Pendant Disulfide Linkages. Biomacromolecules, 2013, 14, 2103-2111.	5.4	118
7	Recent Strategies to Develop Polysaccharideâ€Based Nanomaterials for Biomedical Applications. Macromolecular Rapid Communications, 2014, 35, 1819-1832.	3.9	107
8	Recent strategies to develop self-healable crosslinked polymeric networks. Chemical Communications, 2015, 51, 13058-13070.	4.1	98
9	Biodegradable Block Copolymer Micelles with Thiol-Responsive Sheddable Coronas. Biomacromolecules, 2011, 12, 3819-3825.	5.4	95
10	Glutathione-Triggered Disassembly of Dual Disulfide Located Degradable Nanocarriers of Polylactide-Based Block Copolymers for Rapid Drug Release. Biomacromolecules, 2014, 15, 3180-3189.	5.4	92
11	Dual Sulfide–Disulfide Crosslinked Networks with Rapid and Room Temperature Selfâ€Healability. Macromolecular Rapid Communications, 2015, 36, 1255-1260.	3.9	83
12	Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2067-2077.	3.3	69
13	Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Molecular Pharmaceutics, 2017, 14, 2460-2474.	4.6	69
14	Multifunctional Self-Assembled Supernanoparticles for Deep-Tissue Bimodal Imaging and Amplified Dual-Mode Heating Treatment. ACS Nano, 2019, 13, 408-420.	14.6	68
15	Multidentate Block-Copolymer-Stabilized Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability for Magnetic Resonance Imaging. Biomacromolecules, 2014, 15, 2146-2156.	5.4	60
16	Surface modification of colloidal CdX-based quantum dots for biomedical applications. Journal of Materials Chemistry, 2010, 20, 8433.	6.7	57
17	Self-Healable Reprocessable Triboelectric Nanogenerators Fabricated with Vitrimeric Poly(hindered) Tj ETQq1 1	0.784314 14.6	rgBT_/Overloc 57
18	Thiol-responsive block copolymer nanocarriers exhibiting tunable release with morphology changes.	3.9	56

Polymer Chemistry, 2013, 4, 351-359.

3.9 56

#	Article	IF	CITATIONS
19	Dual location disulfide degradable interlayer-crosslinked micelles with extended sheddable coronas exhibiting enhanced colloidal stability and rapid release. Polymer Chemistry, 2014, 5, 1637-1649.	3.9	55
20	Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer, 2015, 72, 387-394.	3.8	50
21	A dual location stimuli-responsive degradation strategy of block copolymer nanocarriers for accelerated release. Chemical Communications, 2013, 49, 7534.	4.1	44
22	Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polymer Chemistry, 2020, 11, 2934-2954.	3.9	39
23	Reductively degradable polyester-based block copolymers prepared by facile polycondensation and ATRP: synthesis, degradation, and aqueous micellization. Soft Matter, 2011, 7, 7441.	2.7	37
24	New Design of Thiolâ€Responsive Degradable Polylactideâ€Based Block Copolymer Micelles. Macromolecular Rapid Communications, 2013, 34, 163-168.	3.9	37
25	Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polymer Chemistry, 2019, 10, 1554-1568.	3.9	37
26	Rapidly thiol-responsive degradable block copolymer nanocarriers with facile bioconjugation. Polymer Chemistry, 2012, 3, 2138.	3.9	36
27	Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2015, 133, 246-253.	5.0	36
28	Dynamic Covalent Polyurethane Network Materials: Synthesis and Selfâ€Healability. Macromolecular Rapid Communications, 2021, 42, e2100391.	3.9	35
29	New Thiolâ€Responsive Mono leavable Block Copolymer Micelles Labeled with Single Disulfides. Macromolecular Rapid Communications, 2011, 32, 1652-1657.	3.9	34
30	Magnetic Photoluminescent Nanoplatform Built from Large-Pore Mesoporous Silica. Chemistry of Materials, 2019, 31, 3201-3210.	6.7	34
31	A new reactive polymethacrylate bearing pendant furfuryl groups: Synthesis, thermoreversible reactions, and self-healing. Polymer, 2017, 109, 58-65.	3.8	32
32	An Integrated Multifunctional Nanoplatform for Deepâ€Tissue Dualâ€Mode Imaging. Advanced Functional Materials, 2018, 28, 1706235.	14.9	32
33	Synthesis and thiolâ€responsive degradation of polylactideâ€based block copolymers having disulfide junctions using ATRP and ROP. Journal of Polymer Science Part A, 2013, 51, 3071-3080.	2.3	31
34	Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release. RSC Advances, 2014, 4, 229-237.	3.6	31
35	Dual Redox and Thermoresponsive Double Hydrophilic Block Copolymers with Tunable Thermoresponsive Properties and Selfâ€Assembly Behavior. Macromolecular Rapid Communications, 2014, 35, 752-757.	3.9	30
36	Synthesis and reduction-responsive disassembly of PLA-based mono-cleavable micelles. Colloids and Surfaces B: Biointerfaces, 2014, 122, 693-700.	5.0	28

Јинс Кwon Он

#	Article	IF	CITATIONS
37	Mussel-Inspired Multidentate Block Copolymer to Stabilize Ultrasmall Superparamagnetic Fe3O4 for Magnetic Resonance Imaging Contrast Enhancement and Excellent Colloidal Stability. Chemistry of Materials, 2015, 27, 7100-7109.	6.7	28
38	Superparamagnetic Iron Oxide Nanoparticles Stabilized with Multidentate Block Copolymers for Optimal Vascular Contrast inT1-Weighted Magnetic Resonance Imaging. ACS Applied Nano Materials, 2018, 1, 894-907.	5.0	28
39	Rosin-based block copolymer intracellular delivery nanocarriers with reduction-responsive sheddable coronas for cancer therapy. Polymer Chemistry, 2016, 7, 4751-4760.	3.9	27
40	Multiblock Copolymer-Based Dual Dynamic Disulfide and Supramolecular Crosslinked Self-Healing Networks. Macromolecular Rapid Communications, 2017, 38, 1600777.	3.9	27
41	Intracellular Delivery of Colloidally Stable Core-Cross-Linked Triblock Copolymer Micelles with Glutathione-Responsive Enhanced Drug Release for Cancer Therapy. Molecular Pharmaceutics, 2017, 14, 2518-2528.	4.6	24
42	Development and Investigation of Ultrastable PbS/CdS/ZnS Quantum Dots for Nearâ€Infrared Tumor Imaging. Particle and Particle Systems Characterization, 2017, 34, 1600242.	2.3	23
43	Dual Location, Dual Acidic pH/Reduction-Responsive Degradable Block Copolymer: Synthesis and Investigation of Ketal Linkage Instability under ATRP Conditions. Macromolecules, 2017, 50, 9427-9436.	4.8	22
44	Reductively-sheddable cationic nanocarriers for dual chemotherapy and gene therapy with enhanced release. Colloids and Surfaces B: Biointerfaces, 2015, 126, 178-187.	5.0	21
45	Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer, 2021, 230, 124024.	3.8	21
46	Modulated morphologies and tunable thiol-responsive shedding of aqueous block copolymer aggregates. RSC Advances, 2012, 2, 8079.	3.6	20
47	Air‧pun PLA Nanofibers Modified with Reductively Sheddable Hydrophilic Surfaces for Vascular Tissue Engineering: Synthesis and Surface Modification. Macromolecular Rapid Communications, 2014, 35, 447-453.	3.9	20
48	Tumor-targeting intracellular drug delivery based on dual acid/reduction-degradable nanoassemblies with ketal interface and disulfide core locations. Polymer Chemistry, 2019, 10, 2840-2853.	3.9	20
49	Electrospun Upconverting Nanofibrous Hybrids with Smart NIR-Light-Controlled Drug Release for Wound Dressing. ACS Applied Bio Materials, 2020, 3, 7219-7227.	4.6	20
50	Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 177-190.	8.0	19
51	Dual Location Dual Reduction/Photoresponsive Block Copolymer Micelles: Disassembly and Synergistic Release. Macromolecular Rapid Communications, 2015, 36, 1742-1748.	3.9	18
52	Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. Langmuir, 2018, 34, 3316-3325.	3.5	18
53	Thermoreversible Selfâ€Healing Networks Based on a Tunable Polymethacrylate Crossslinker Having Pendant Maleimide Groups. Macromolecular Chemistry and Physics, 2016, 217, 2191-2198.	2.2	17
54	Ambient temperature induced Diels–Alder crosslinked networks based on controlled methacrylate copolymers for enhanced thermoreversibility and self-healability. RSC Advances, 2017, 7, 26496-26506.	3.6	16

#	Article	IF	CITATIONS
55	Designing Ultrasmall Carbon Nanospheres with Tailored Sizes and Textural Properties for High-Rate High-Energy Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 32916-32929.	8.0	16
56	Rapid and Tunable Reductive Degradation of Disulfide‣abeled Polyesters. Macromolecular Chemistry and Physics, 2012, 213, 678-685.	2.2	15
57	New photoâ€induced thiolâ€ene crosslinked films based on linear methacrylate copolymer polythiols. Journal of Polymer Science Part A, 2013, 51, 2860-2868.	2.3	15
58	Polymers in Drug Delivery: Chemistry and Applications. Molecular Pharmaceutics, 2017, 14, 2459-2459.	4.6	14
59	Dual Reduction/Acid-Responsive Disassembly and Thermoresponsive Tunability of Degradable Double Hydrophilic Block Copolymer. ACS Omega, 2020, 5, 3734-3742.	3.5	14
60	Thermally Labile Selfâ€Healable Branched Gel Networks Fabricated by New Macromolecular Engineering Approach Utilizing Thermoreversibility. Macromolecular Rapid Communications, 2018, 39, 1700575.	3.9	13
61	Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery. ACS Biomaterials Science and Engineering, 2020, 6, 5069-5083.	5.2	13
62	Multifunctional linear methacrylate copolymer polyenes having pendant vinyl groups: Synthesis and photoinduced thiol-ene crosslinking polyaddition. Journal of Polymer Science Part A, 2014, 52, 572-581.	2.3	12
63	PLAâ€Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations. Macromolecular Rapid Communications, 2018, 39, e1800477.	3.9	12
64	Dual disassembly and biological evaluation of enzyme/oxidation-responsive polyester-based nanoparticulates for tumor-targeting delivery. Colloids and Surfaces B: Biointerfaces, 2018, 172, 608-617.	5.0	12
65	Facile Strategies to Synthesize Dual Location Dual Acidic pH/Reduction-Responsive Degradable Block Copolymers Bearing Acetal/Disulfide Block Junctions and Disulfide Pendants. ACS Omega, 2018, 3, 8980-8991.	3.5	11
66	Phosphonated homopolymers and copolymers via ring opening metathesis polymerization: <i>T</i> _g tuning, flame resistance, and photolithography. Journal of Polymer Science Part A, 2016, 54, 1396-1408.	2.3	10
67	Imidazoleâ€Mediated Dual Location Disassembly of Acidâ€Degradable Intracellular Drug Delivery Block Copolymer Nanoassemblies. Macromolecular Rapid Communications, 2021, 42, e2100262.	3.9	10
68	Dynamic and Reprocessable Fluorinated Poly(hindered urea) Network Materials Containing Ionic Liquids to Enhance Triboelectric Performance. ACS Applied Materials & Interfaces, 2022, 14, 17806-17817.	8.0	10
69	Tuning amphiphilicity/temperatureâ€induced selfâ€assembly and inâ€situ disulfide crosslinking of reductionâ€responsive block copolymers. Journal of Polymer Science Part A, 2014, 52, 2057-2067.	2.3	9
70	Thiol-responsive hydrogel scaffolds for rapid change in thermoresponsiveness. RSC Advances, 2014, 4, 3699-3707.	3.6	9
71	Extremely Small Iron Oxide Nanoparticles Stabilized with Catecholâ€Functionalized Multidentate Block Copolymer for Enhanced MRI. ChemistrySelect, 2016, 1, 4087-4091.	1.5	9
72	Synthesis of degradable PLA-based diblock copolymers with dual acid/reduction-cleavable junction. Polymer, 2020, 194, 122391.	3.8	9

#	Article	IF	CITATIONS
73	pHâ€responsive destabilization and facile bioconjugation of new hydroxylâ€terminated block copolymer micelles. Journal of Polymer Science Part A, 2013, 51, 1620-1629.	2.3	8
74	Chain Length Effect of the Multidentate Block Copolymer Strategy to Stabilize Ultrasmall Fe ₃ O ₄ Nanoparticles. ChemPlusChem, 2014, 79, 1342-1351.	2.8	8
75	Photoâ€induced thiolâ€ene polysulfideâ€crosslinked materials with tunable thermal and mechanical properties. Journal of Polymer Science Part A, 2014, 52, 3060-3068.	2.3	8
76	Scratch and recovery characteristics of automotive clearcoats containing blocked polyisocyanate crosslinkers. Journal of Coatings Technology Research, 2015, 12, 85-95.	2.5	8
77	Dual-Location Dual-Acid/Glutathione-Degradable Cationic Micelleplexes through Hydrophobic Modification for Enhanced Gene Silencing. Molecular Pharmaceutics, 2020, 17, 3979-3989.	4.6	8
78	Dual Location Reduction-Responsive Degradable Nanocarriers: A New Strategy for Intracellular Anticancer Drug Delivery with Accelerated Release. ACS Symposium Series, 2015, , 273-291.	0.5	7
79	Reduction-Responsive Sheddable Carbon Nanotubes Dispersed in Aqueous Solution. Macromolecular Rapid Communications, 2016, 37, 705-710.	3.9	7
80	Photo-induced thiol-ene crosslinked polymethacrylate networks reinforced with Al2O3 nanoparticles. Polymer, 2016, 101, 119-126.	3.8	7
81	Functional amphiphilic oligo(ethylene oxide) methacrylateâ€based block copolymers: synthesis by an activator regenerated by electron transfer process for atom transfer radical polymerization and aqueous micellization. Polymer International, 2014, 63, 858-867.	3.1	6
82	Free radical nano scavenger based on amphiphilic novolacs. RSC Advances, 2015, 5, 95666-95673.	3.6	6
83	Direct Polymerization Approach to Synthesize Acidâ€Degradable Block Copolymers Bearing Imine Pendants for Tunable pH ensitivity and Enhanced Release. Macromolecular Rapid Communications, 2020, 41, 2000394.	3.9	6
84	Macromolecularly Engineered Thermoreversible Heterogeneous Selfâ€Healable Networks Encapsulating Reactive Multidentate Block Copolymerâ€Stabilized Carbon Nanotubes. Macromolecular Rapid Communications, 2021, 42, e2000514.	3.9	6
85	Self-healable triboelectric nanogenerators based on ionic poly(hindered urea) network materials cross-linked with fluorinated block copolymers. Polymer Chemistry, 2022, 13, 4343-4351.	3.9	6
86	Reactive Multidentate Block Copolymer Stabilization to Carbon Nanotubes for Thermoreversible Cross-Linked Network Gels. ACS Applied Polymer Materials, 2020, 2, 2319-2326.	4.4	5
87	New Design of Thiol-Responsive Degradable Block Copolymer Micelles as Controlled Drug Delivery Vehicles. ACS Symposium Series, 2012, , 287-302.	0.5	4
88	Enhanced encapsulation of superparamagnetic Fe ₃ O ₄ in acidic core-containing micelles for magnetic resonance imaging. RSC Advances, 2015, 5, 107938-107948.	3.6	4
89	Perfluorocarbon Nanodroplets for Dual Delivery with Ultrasound/GSH-Responsive Release of Model Drug and Passive Release of Nitric Oxide. Polymers, 2022, 14, 2240.	4.5	4
90	Well-defined methacrylate copolymer having reactive maleimide pendants for fabrication of thermally-labile crosslinked networks with robust self-healing. Materials Today Communications, 2017, 13, 241-247.	1.9	3

#	Article	IF	CITATIONS
91	Bioimaging: An Integrated Multifunctional Nanoplatform for Deepâ€Tissue Dualâ€Mode Imaging (Adv.) Tj ETQq1 I	1 0,78431 14.9	4₁rgBT /Ov∈
92	Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Molecular Pharmaceutics, 0, , .	4.6	1
93	Macromol. Rapid Commun. 13/2015. Macromolecular Rapid Communications, 2015, 36, 1300-1300.	3.9	0
94	Macromol. Rapid Commun. 19/2015. Macromolecular Rapid Communications, 2015, 36, 1772-1772.	3.9	0
95	Multidentate Block Copolymer Stabilization: A Versatile Strategy for Colloidal Superparamagnetic Iron Oxide Nanoparticles Exhibiting Excellent Colloidal Stability and Enhanced Positive MRI Visualization. ACS Symposium Series, 2018, , 107-128.	0.5	0
96	Carbonylimidazole-hydroxyl coupling chemistry: Synthesis and block copolymerization of fully bio-reducible poly(carbonate-disulfide)s. Polymer, 2020, 206, 122793.	3.8	0