Ramanuj Lahiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/441640/publications.pdf Version: 2024-02-01

RAMANUU LAHIDI

#	Article	IF	CITATIONS
1	A Sensitive and Quantitative Assay to Enumerate and Measure <i>Mycobacterium leprae</i> Viability in Clinical and Experimental Specimens. Current Protocols, 2022, 2, e359.	2.9	4
2	Sensitivity of <i>Mycobacterium leprae</i> to Telacebec. Emerging Infectious Diseases, 2022, 28, 749-751.	4.3	0
3	Sensitivity of <i>Mycobacterium leprae</i> to Telacebec. Emerging Infectious Diseases, 2022, 28, 749-751.	4.3	8
4	<i>Mycobacterium lepromatosis</i> as Cause of Leprosy, Colombia. Emerging Infectious Diseases, 2022, 28, 1067-1068.	4.3	7
5	Culturing Mycobacteria. Methods in Molecular Biology, 2021, 2314, 1-58.	0.9	10
6	Reductive Power Generated by Mycobacterium leprae Through Cholesterol Oxidation Contributes to Lipid and ATP Synthesis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 709972.	3.9	10
7	Mycobacterium leprae Infection in Ticks and Tick-Derived Cells. Frontiers in Microbiology, 2021, 12, 761420.	3.5	7
8	Mycobacterium leprae Transcriptome During In Vivo Growth and Ex Vivo Stationary Phases. Frontiers in Cellular and Infection Microbiology, 2021, 11, 817221.	3.9	7
9	Isolation of <i>Mycobacterium lepromatosis</i> and Development of Molecular Diagnostic Assays to Distinguish <i>Mycobacterium leprae</i> and <i>M. lepromatosis</i> . Clinical Infectious Diseases, 2020, 71, e262-e269.	5.8	37
10	Post-exposure prophylaxis (PEP) efficacy of rifampin, rifapentine, moxifloxacin, minocycline, and clarithromycin in a susceptible-subclinical model of leprosy. PLoS Neglected Tropical Diseases, 2020, 14, e0008583.	3.0	7
11	Leprosy Transmission in Amazonian Countries: Current Status and Future Trends. Current Tropical Medicine Reports, 2020, 7, 79-91.	3.7	13
12	Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification. Nucleic Acids Research, 2020, 48, 8099-8112.	14.5	20
13	GSMN-ML- a genome scale metabolic network reconstruction of the obligate human pathogen Mycobacterium leprae. PLoS Neglected Tropical Diseases, 2020, 14, e0007871.	3.0	8
14	Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15616-15624.	7.1	50
15	Dual RNA-Seq of Human Leprosy Lesions Identifies Bacterial Determinants Linked to Host Immune Response. Cell Reports, 2019, 26, 3574-3585.e3.	6.4	38
16	Nitazoxanide is active against Mycobacterium leprae. PLoS ONE, 2017, 12, e0184107.	2.5	16
17	Long-term Survival and Virulence of Mycobacterium leprae in Amoebal Cysts. PLoS Neglected Tropical Diseases, 2014, 8, e3405.	3.0	78
18	Semi-automated protocol for purification of Mycobacterium leprae from tissues using the gentleMACSâ,,¢ Octo Dissociator. Journal of Microbiological Methods, 2014, 105, 80-81.	1.6	1

Ramanuj Lahiri

#	Article	IF	CITATIONS
19	The armadillo: a model for neuropathy of leprosy and potentially other neurodegenerative diseases. DMM Disease Models and Mechanisms, 2013, 6, 19-24.	2.4	66
20	Molecular Assays for Determining Mycobacterium leprae Viability in Tissues of Experimentally Infected Mice. PLoS Neglected Tropical Diseases, 2013, 7, e2404.	3.0	49
21	Development of a mouse food pad model for detection of sub clinical leprosy. Leprosy Review, 2011, 82, 432-44.	0.3	6
22	Infection of Mouse Macrophages with Viable <i>Mycobacterium leprae</i> Does Not Induce Apoptosis. Journal of Infectious Diseases, 2010, 201, 1736-1742.	4.0	22
23	Molecular Determination of <i>Mycobacterium leprae</i> Viability by Use of Real-Time PCR. Journal of Clinical Microbiology, 2010, 48, 346-346.	3.9	0
24	Vaccination with the ML0276 Antigen Reduces Local Inflammation but Not Bacterial Burden during Experimental <i>M ycobacterium leprae</i> Infection. Infection and Immunity, 2009, 77, 5623-5630.	2.2	23
25	Molecular Determination of <i>Mycobacterium leprae</i> Viability by Use of Real-Time PCR. Journal of Clinical Microbiology, 2009, 47, 2124-2130.	3.9	106
26	The role of free-living pathogenic amoeba in the transmission of leprosy: a proof of principle. Leprosy Review, 2008, 79, 401-409.	0.3	39
27	The role of free-living pathogenic amoeba in the transmission of leprosy: a proof of principle. Leprosy Review, 2008, 79, 401-9.	0.3	26
28	Antigen-Specific Cellular and Humoral Responses Are Induced by Intradermal <i>Mycobacterium leprae</i> Infection of the Mouse Ear. Infection and Immunity, 2007, 75, 5290-5297.	2.2	9
29	Brugia malayi Adult Low Molecular Weight IgG4-Reactive Antigens Induce Differential Cytokine Response in Lymphocytes of Endemic Normal and Asymptomatic Microfilariae Carriers In Vitro. Journal of Clinical Immunology, 2007, 27, 397-408.	3.8	5
30	Mycobacterium leprae Is Naturally Resistant to PA-824. Antimicrobial Agents and Chemotherapy, 2006, 50, 3350-3354.	3.2	42
31	Application of a viability-staining method for Mycobacterium leprae derived from the athymic (nu/nu) mouse foot pad. Journal of Medical Microbiology, 2005, 54, 235-242.	1.8	65
32	Effects of purification and fluorescent staining on viability of Mycobacterium leprae. International Journal of Leprosy and Other Mycobacterial Diseases, 2005, 73, 194-202.	0.3	10
33	The Armadillo as a Model for Leprosy Nerve Function Impairment: Preventative and Therapeutic Interventions. Frontiers in Medicine, 0, 9, .	2.6	1