Chinkyo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4415724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diffusion-enhanced preferential growth of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e570" altimg="si37.svg"> <mml:mi>m</mml:mi>-oriented GaN micro-domains on directly grown graphene with a large domain size on Ti/SiO2/Si(001). Materials Today Communications, 2022, 30, 103113.</mml:math 	1.9	3
2	A Laterally Overgrown GaN Thin Film Epitaxially Separated from but Physically Attached to an SiO ₂ -Patterned Sapphire Substrate. Crystal Growth and Design, 2020, 20, 6198-6204.	3.0	3
3	Two-dimensional non-close-packed arrays of polystyrene microspheres prepared by controlling the size of polystyrene microspheres. Polymer, 2019, 185, 121938.	3.8	2
4	Non-edge-triggered inversion from Ga polarity to N polarity of <i>c</i> -GaN domains on an SiO ₂ mask during epitaxial lateral overgrowth. Journal of Applied Crystallography, 2019, 52, 532-537.	4.5	5
5	Polarity-inverted lateral overgrowth and selective wet-etching and regrowth (PILOSWER) of GaN. Scientific Reports, 2018, 8, 4112.	3.3	7
6	Inversion domain boundary structure of laterally overgrown c-GaN domains including the inversion from Ga to N polarity at a mask pattern boundary. Journal of Applied Crystallography, 2018, 51, 1551-1555.	4.5	4
7	Polarity and threading dislocation dependence of the surface morphology of <i>c</i> -GaN films exposed to HCl vapor. Journal of Materials Chemistry C, 2018, 6, 6264-6269.	5.5	4
8	Faceted growth of ({f {overline 1}103})-oriented GaN domains on an SiO ₂ -patterned <i>m</i> -plane sapphire substrate using polarity inversion. Journal of Applied Crystallography, 2017, 50, 30-35.	4.5	3
9	Catalytic decomposition of SiO 2 by Fe and the effect of Cu on the behavior of released Si species. Current Applied Physics, 2016, 16, 93-100.	2.4	1
10	The determining factor of a preferred orientation of GaN domains grown on m-plane sapphire substrates. Scientific Reports, 2015, 5, 16236.	3.3	3
11	Spontaneous pattern transfer and selective growth of graphene on a Cu foil. Carbon, 2015, 82, 238-244.	10.3	4
12	Self-regulated in-plane polarity of [11Â⁻00]-oriented GaN domains coalesced from twins grown on a SiO2-patterned <i>m</i> -plane sapphire substrate. Applied Physics Letters, 2014, 104, .	3.3	9
13	A surface flattening mechanism of a heteroepitaxial film consisting of faceted non-flat top twins: [11Â ⁻ 3Â ⁻]-oriented GaN films grown on <i>m</i> -plane sapphire substrates. Applied Physics Letters, 2014, 104, .	3.3	10
14	Microscopic analysis of thermally-driven formation of Cu-Si alloy nanoparticles in a Cu/Si template. Journal of the Korean Physical Society, 2013, 63, 2128-2132.	0.7	3
15	Spontaneous inversion of in-plane polarity of <i>a</i> -oriented GaN domains laterally overgrown on patterned <i>r</i> -plane sapphire substrates. Journal of Applied Crystallography, 2013, 46, 443-447.	4.5	6
16	Nitridation- and Buffer-Layer-Free Growth of \$[1ar{1}00]\$-Oriented GaN Domains on \$m\$-Plane Sapphire Substrates by Using Hydride Vapor Phase Epitaxy. Applied Physics Express, 2012, 5, 121001.	2.4	12
17	Analysis of Morphological Evolution of Crystalline Domains in Nonequilibrium Shape by Using Minimization of Effective Surface Energy. Crystal Growth and Design, 2011, 11, 3930-3934.	3.0	4
18	Novel approach to the fabrication of a strain- and crack-free GaN free-standing template: Self-separation assisted by the voids spontaneously formed during the transition in the preferred orientation. Journal of Crystal Growth, 2010, 312, 198-201.	1.5	4

Снілкуо Кім

#	Article	IF	CITATIONS
19	Controlled growth and surface morphology evolution of m-oriented GaN faceted-domains on SiO2-patterned m-plane sapphire substrates. Applied Physics Letters, 2010, 97, .	3.3	6
20	Use of Polytypes to Control Crystallographic Orientation of GaN. Crystal Growth and Design, 2010, 10, 5307-5311.	3.0	8
21	Spontaneous transition in preferred orientation of GaN domains grown on r-plane sapphire substrate from [112Â ⁻ 0] to [0001]. Applied Physics Letters, 2009, 94, 102103.	3.3	5
22	Nucleation characteristics of GaN nanorods grown on etched sapphire substrates by hydride vapor phase epitaxy. Journal of Crystal Growth, 2009, 311, 2953-2955.	1.5	4
23	Accelerated surface flattening by alternating Ga flow in hydride vapor phase epitaxy. Journal of Crystal Growth, 2009, 311, 3025-3028.	1.5	3
24	Surface morphology of GaN nanorods grown by catalyst-free hydride vapor phase epitaxy. Applied Surface Science, 2009, 256, 1078-1081.	6.1	3
25	Microstructural Analysis of Void Formation Due to a NH4Cl Layer for Self-Separation of GaN Thick Films. Crystal Growth and Design, 2009, 9, 2877-2880.	3.0	5
26	<i>Inâ€situ</i> measurement of the strain relaxation of GaN nanograins during Xâ€ray irradiation. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1699-1701.	0.8	1
27	Long-range ordering of GaN nano-grains grown on vicinal sapphire substrates. Journal of Crystal Growth, 2008, 310, 3278-3281.	1.5	2
28	Branching Characteristics of GaN Multipods Grown by Using Hydride Vapor Phase Epitaxy. Journal of the Korean Physical Society, 2008, 53, 1393-1396.	0.7	1
29	Effect of the Temperature Gradient Between a Substrate and its Ambient on the Growth of Vertically-Aligned GaN Nanorods. Journal of the Korean Physical Society, 2008, 53, 908-911.	0.7	3
30	Surface-morphology evolution and strain relaxation during heteroepitaxial growth of GaN films without low-temperature nucleation layers. Applied Physics Letters, 2007, 90, 151905.	3.3	8