FlÃjvia C C Moura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4415599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Applied Catalysis B: Environmental, 2008, 83, 131-139.	10.8	301
2	Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere, 2005, 60, 1118-1123.	4.2	154
3	Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton. Applied Catalysis B: Environmental, 2016, 186, 136-142.	10.8	121
4	Controlled reduction of red mud waste to produce active systems for environmental applications: Heterogeneous Fenton reaction and reduction of Cr(VI). Chemosphere, 2010, 78, 1116-1120.	4.2	81
5	Iron: a versatile element to produce materials for environmental applications. Journal of the Brazilian Chemical Society, 2012, 23, 1579-1593.	0.6	43
6	Nanostructured vanadium-doped iron oxide: catalytic oxidation of methylene blue dye. New Journal of Chemistry, 2015, 39, 3051-3058.	1.4	40
7	Gold nanoparticles supported on modified red mud for biphasic oxidation of sulfur compounds: A synergistic effect. Applied Catalysis B: Environmental, 2015, 162, 475-482.	10.8	40
8	Emerging contaminants removal by granular activated carbon obtained from residual Macauba biomass. Environmental Science and Pollution Research, 2018, 25, 26482-26492.	2.7	36
9	Nb-doped hematite: Highly active catalyst for the oxidation of organic dyes in water. Catalysis Today, 2015, 240, 176-181.	2.2	34
10	Amine-Functionalized Mesoporous Silica as a Support for on-Demand Release of Copper in the A ³ -Coupling Reaction: Ultralow Concentration Catalysis and Confinement Effect. ACS Sustainable Chemistry and Engineering, 2019, 7, 8696-8705.	3.2	31
11	Amphiphilic magnetic composites based on layered vermiculite and fibrous chrysotile with carbon nanostructures: Application in catalysis. Catalysis Today, 2012, 190, 133-143.	2.2	30
12	Adsorption of sulfur and nitrogen compounds on hydrophobic bentonite. Applied Clay Science, 2013, 83-84, 286-293.	2.6	28
13	Catalytic activity of sulfated niobium oxide for oleic acid esterification. Journal of Environmental Chemical Engineering, 2019, 7, 102866.	3.3	26
14	Carbon nanostructures-modified expanded vermiculites produced by chemical vapor deposition from ethanol. Applied Clay Science, 2011, 54, 15-19.	2.6	23
15	Magnetic Amphiphilic Composites Applied for the Treatment of Biodiesel Wastewaters. Applied Sciences (Switzerland), 2012, 2, 513-524.	1.3	22
16	β-pinene oxidation by hydrogen peroxide catalyzed by modified niobium-MCM. Applied Catalysis A: General, 2012, 419-420, 215-220.	2.2	22
17	Magnetic amphiphilic nanocomposites produced via chemical vapor deposition of CH4 on Fe–Mo/nano-Al2O3. Applied Catalysis A: General, 2013, 456, 126-134.	2.2	22
18	Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal. Journal of Hazardous Materials, 2012, 241-242, 73-81.	6.5	21

FLÃivia C C Moura

#	Article	IF	CITATIONS
19	Red mud based gold catalysts in the oxidation of benzyl alcohol with molecular oxygen. Catalysis Today, 2017, 289, 89-95.	2.2	20
20	Highly ordered spherical SBA-15 catalysts for the removal of contaminants from the oil industry. Chemical Engineering Journal, 2017, 318, 189-196.	6.6	18
21	LaFexMoyMnzO3 perovskite as catalyst precursors for the CVD synthesis of carbon nanotubes. Catalysis Today, 2008, 133-135, 846-854.	2.2	17
22	A novel floating photocatalyst device based on cloth canvas impregnated with iron oxide. New Journal of Chemistry, 2013, 37, 2486.	1.4	14
23	Synthesis and characterization of catalysts based on mesoporous silica partially hydrophobized for technological applications. Environmental Science and Pollution Research, 2017, 24, 5991-6001.	2.7	14
24	Ionic liquid layer on Pd/C catalyst: Membrane-like effect on the selectivity for multistep hydrogenation reactions. Journal of Molecular Catalysis A, 2012, 363-364, 74-80.	4.8	13
25	Magnetic adsorbent based on cobalt core nanoparticles coated with carbon filaments and nanotubes produced by chemical vapor deposition with ethanol. Chemical Engineering Journal, 2013, 229, 35-41.	6.6	12
26	N-doped carbon nanotubes grown on red mud residue: Hybrid nanocomposites for technological applications. Catalysis Today, 2020, 344, 247-258.	2.2	12
27	Making more with less: confinement effects for more sustainable chemical transformations. Green Chemistry, 2022, 24, 1404-1438.	4.6	12
28	Fe/C and FeMo/C hybrid materials for the biphasic oxidation of fuel contaminants. New Journal of Chemistry, 2017, 41, 142-150.	1.4	10
29	Unique catalytic behaviour of Ir4 clusters for the selective hydrogenation of 1,5-cyclooctadiene. Catalysis Communications, 2002, 3, 541-545.	1.6	9
30	Magnetic Carbon Nanofiber Networks as Support for Ionic Liquid Based Catalyst. Catalysis Letters, 2015, 145, 505-510.	1.4	8
31	Growth of carbon structures on chrysotile surface for organic contaminants removal from wastewater. Chemosphere, 2016, 159, 602-609.	4.2	8
32	Understanding photocatalytic activity and mechanism of nickel-modified niobium mesoporous nanomaterials. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112168.	2.0	8
33	NiMo/C Used as Magnetic Support for SILP Catalysts. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2288-2296.	1.9	5
34	CO2 capture performance and mechanical properties of Ca(OH)2-based sorbent modified with MgO and (NH4)2HPO4 for Calcium Looping cycle. Fuel, 2019, 256, 115924.	3.4	5
35	Performance of niobium catalysts in a one-pot system for selective methanol conversion to dimethoxymethane under mild conditions. Fuel, 2020, 262, 116417.	3.4	5
36	Magnetic amphiphilic nanocomposites based on silica–carbon for sulphur contaminant oxidation. New Journal of Chemistry, 2015, 39, 5445-5452.	1.4	4

#	Article	IF	CITATIONS
37	The combined effect between Co and carbon nanostructures grown on cordierite monoliths for the removal of organic contaminants from the liquid phase. New Journal of Chemistry, 2015, 39, 1438-1444.	1.4	3