Jason W Upton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4415549/publications.pdf Version: 2024-02-01

LASON W/ LIDTON

#	Article	IF	CITATIONS
1	Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance. Nature Communications, 2021, 12, 3364.	5.8	43
2	Vaccinia virus E3 prevents sensing of Z-RNA to block ZBP1-dependent necroptosis. Cell Host and Microbe, 2021, 29, 1266-1276.e5.	5.1	66
3	Necroptosis-based CRISPR knockout screen reveals Neuropilin-1 as a critical host factor for early stages of murine cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20109-20116.	3.3	25
4	Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell, 2020, 180, 1115-1129.e13.	13.5	288
5	DAI/ZBP1/DLM-1 Complexes with RIP3 to Mediate Virus-Induced Programmed Necrosis that Is Targeted by Murine Cytomegalovirus vIRA. Cell Host and Microbe, 2019, 26, 564.	5.1	27
6	Murine cytomegalovirus M72 promotes acute virus replication in vivo and is a substrate of the TRiC/CCT complex. Virology, 2018, 522, 92-105.	1.1	9
7	Species-independent contribution of ZBP1/DAI/DLM-1-triggered necroptosis in host defense against HSV1. Cell Death and Disease, 2018, 9, 816.	2.7	88
8	Viral RNA at Two Stages of Reovirus Infection Is Required for the Induction of Necroptosis. Journal of Virology, 2017, 91, .	1.5	43
9	Murine Cytomegalovirus Deubiquitinase Regulates Viral Chemokine Levels To Control Inflammation and Pathogenesis. MBio, 2017, 8, .	1.8	21
10	DAI Another Way: Necroptotic Control of Viral Infection. Cell Host and Microbe, 2017, 21, 290-293.	5.1	19
11	<scp>RIPK</scp> 3â€driven cell death during virus infections. Immunological Reviews, 2017, 277, 90-101.	2.8	54
12	Host response: Neurons loosen the gRIP of death. Nature Microbiology, 2017, 2, 17090.	5.9	0
13	Murine cytomegalovirus <scp>IE</scp> 3â€dependent transcription is required for <scp>DAI</scp> / <scp>ZBP</scp> 1â€mediated necroptosis. EMBO Reports, 2017, 18, 1429-1441.	2.0	71
14	Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11506-11511.	3.3	121
15	Sensing of viral and endogenous <scp>RNA</scp> by <scp>ZBP</scp> 1/ <scp>DAI</scp> induces necroptosis. EMBO Journal, 2017, 36, 2529-2543.	3.5	171
16	Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6403-6408.	3.3	86
17	DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host and Microbe, 2016, 20, 674-681.	5.1	292
18	Evasion of Innate Cytosolic DNA Sensing by a Gammaherpesvirus Facilitates Establishment of Latent Infection. Journal of Immunology, 2015, 194, 1819-1831.	0.4	88

JASON W UPTON

#	Article	IF	CITATIONS
19	Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5303-5308.	3.3	137
20	RIP3 Induces Apoptosis Independent of Pronecrotic Kinase Activity. Molecular Cell, 2014, 56, 481-495.	4.5	470
21	Programmed necrosis in microbial pathogenesis. Trends in Microbiology, 2014, 22, 199-207.	3.5	100
22	Staying Alive: Cell Death in Antiviral Immunity. Molecular Cell, 2014, 54, 273-280.	4.5	141
23	InFLUencing Host Survival: cIAP2 Tips the Scales. Cell Host and Microbe, 2014, 15, 3-5.	5.1	2
24	True Grit: Programmed Necrosis in Antiviral Host Defense, Inflammation, and Immunogenicity. Journal of Immunology, 2014, 192, 2019-2026.	0.4	68
25	Viral modulation of programmed necrosis. Current Opinion in Virology, 2013, 3, 296-306.	2.6	134
26	Toll-like Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL. Journal of Biological Chemistry, 2013, 288, 31268-31279.	1.6	727
27	DAI/ZBP1/DLM-1 Complexes with RIP3 to Mediate Virus-Induced Programmed Necrosis that Is Targeted by Murine Cytomegalovirus vIRA. Cell Host and Microbe, 2012, 11, 290-297.	5.1	601
28	Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nature Reviews Immunology, 2012, 12, 79-88.	10.6	266
29	RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature, 2011, 471, 368-372.	13.7	881
30	Virus Inhibition of RIP3-Dependent Necrosis. Cell Host and Microbe, 2010, 7, 302-313.	5.1	494
31	The spleen plays a central role in primary humoral alloimmunization to transfused mHEL red blood cells. Transfusion, 2009, 49, 1678-1684.	0.8	35
32	Receptor-Interacting Protein Homotypic Interaction Motif-Dependent Control of NF-κB Activation via the DNA-Dependent Activator of IFN Regulatory Factors. Journal of Immunology, 2008, 181, 6427-6434.	0.4	224
33	Cytomegalovirus M45 Cell Death Suppression Requires Receptor-interacting Protein (RIP) Homotypic Interaction Motif (RHIM)-dependent Interaction with RIP1. Journal of Biological Chemistry, 2008, 283, 16966-16970.	1.6	165
34	A Gammaherpesvirus 68 Gene 50 Null Mutant Establishes Long-Term Latency in the Lung but Fails To Vaccinate against a Wild-Type Virus Challenge. Journal of Virology, 2006, 80, 1592-1598.	1.5	42
35	Evidence for CDK-Dependent and CDK-Independent Functions of the Murine Gammaherpesvirus 68 v-Cyclin. Journal of Virology, 2006, 80, 11946-11959.	1.5	24
36	Characterization of murine gammaherpesvirus 68 v-cyclin interactions with cellular cdks. Virology, 2005, 341, 271-283.	1.1	34

#	Article	IF	CITATIONS
37	Ex Vivo Stimulation of B Cells Latently Infected with Gammaherpesvirus 68 Triggers Reactivation from Latency. Journal of Virology, 2005, 79, 5227-5231.	1.5	36
38	Role of B-Cell Proliferation in the Establishment of Gammaherpesvirus Latency. Journal of Virology, 2005, 79, 9480-9491.	1.5	41
39	Thermotolerant Guard Cell Protoplasts of Tree Tobacco Do Not Require Exogenous Hormones to Survive in Culture and Are Blocked from Reentering the Cell Cycle at the G1-to-S Transition. Plant Physiology, 2003, 132, 1925-1940.	2.3	4