Christopher G Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4415140/publications.pdf

Version: 2024-02-01

68 papers

2,715 citations

30 h-index 51 g-index

68 all docs 68 docs citations 68 times ranked 2460 citing authors

#	Article	IF	CITATIONS
1	Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture. Macromolecules, 2008, 41, 7232-7238.	2.2	294
2	Influence of Particle Size and Polymerâ'Filler Coupling on Viscoelastic Glass Transition of Particle-Reinforced Polymers. Macromolecules, 2008, 41, 2727-2731.	2.2	263
3	Effect of Silica Nanoparticles on the Local Segmental Dynamics in Poly(vinyl acetate). Macromolecules, 2008, 41, 1289-1296.	2.2	159
4	Glass Transition and Interfacial Segmental Dynamics in Polymer-Particle Composites. Rubber Chemistry and Technology, 2008, 81, 506-522.	0.6	153
5	Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Polymers, 2021, 13, 538.	2.0	105
6	FLOCCULATION, REINFORCEMENT, AND GLASS TRANSITION EFFECTS IN SILICA-FILLED STYRENE-BUTADIENE RUBBER. Rubber Chemistry and Technology, 2011, 84, 507-519.	0.6	93
7	Structure Evolution in a Polyurea Segmented Block Copolymer Because of Mechanical Deformation. Macromolecules, 2008, 41, 7543-7548.	2.2	89
8	Further Consideration of Viscoelastic Two Glass Transition Behavior of Nanoparticle-Filled Polymers. Macromolecules, 2011, 44, 1177-1181.	2.2	84
9	Comparison of glass formation kinetics and segmental relaxation in polymers. Journal of Non-Crystalline Solids, 2000, 275, 153-159.	1.5	7 5
10	Strain-induced nonlinearity of filled rubbers. Physical Review E, 2005, 72, 031406.	0.8	71
11	Isoenergetic Jamming Transition in Particle-Filled Systems. Physical Review Letters, 2005, 95, 075703.	2.9	70
12	Wall slip and spurt flow of polybutadiene. Journal of Rheology, 2008, 52, 1201-1239.	1.3	63
13	Effect of Polar Interactions on Polymer Dynamics. Macromolecules, 2012, 45, 8430-8437.	2.2	59
14	Extent of branching from linear viscoelasticity of long-chain-branched polymers. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1671-1684.	2.4	52
15	Reentanglement Kinetics in Sheared Polybutadiene Solutions. Macromolecules, 2004, 37, 10018-10022.	2.2	49
16	?- and ?-Relaxations in neat and antiplasticized polybutadiene. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1841-1847.	2.4	48
17	Effect of nanoscale confinement on glass transition of polystyrene domains from self-assembly of block copolymers. Journal of Chemical Physics, 2010, 132, 104904.	1.2	48
18	Dynamic Heterogeneity and Density Scaling in 1,4-Polyisoprene. Macromolecules, 2011, 44, 1149-1155.	2.2	41

#	Article	IF	CITATIONS
19	Molecular insight into the Mullins effect: irreversible disentanglement of polymer chains revealed by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 19468-19477.	1.3	41
20	Effect of network structure of epoxy DGEBA-poly(oxypropylene)diamines on tensile behavior. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2815-2819.	2.4	38
21	Linearâ€nonlinear dichotomy of the rheological response of particleâ€filled polymers. Journal of Applied Polymer Science, 2014, 131, .	1.3	38
22	Physical aging of an amorphous polyimide: Enthalpy relaxation and mechanical property changes. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1931-1946.	2.4	37
23	Spectral hole burning to probe the nature of unjamming (Payne effect) in particle-filled elastomers. Europhysics Letters, 2006, 76, 278-284.	0.7	37
24	Relative quantification of long chain branching in essentially linear polyethylenes. European Polymer Journal, 2008, 44, 376-391.	2.6	37
25	Refractive index: A probe for monitoring volume relaxation during physical aging of glassy polymers. Polymer, 1998, 39, 2129-2133.	1.8	35
26	Long-Term Volume Relaxation of Bisphenol A Polycarbonate and Atactic Polystyrene. Macromolecules, 2000, 33, 3954-3955.	2.2	35
27	Nonlinear rheology of hyperbranched polyisobutylene. Journal of Rheology, 2002, 46, 307-320.	1.3	34
28	Effect of structural arrest on Poisson's ratio in nanoreinforced elastomers. Physical Review E, 2007, 75, 051403.	0.8	33
29	Coupling Model Interpretation of Thermorheological Complexity in Polybutadienes with Varied Microstructure. Macromolecules, 2004, 37, 10009-10017.	2.2	32
30	INTERPRETATION OF THE TANÎ [°] PEAK HEIGHT FOR PARTICLE-FILLED RUBBER AND POLYMER NANOCOMPOSITES WITH RELEVANCE TO TIRE TREAD PERFORMANCE BALANCE. Rubber Chemistry and Technology, 2018, 91, 577-594.	0.6	32
31	Physical aging behavior of miscible blends of poly(methyl methacrylate) and poly(styrene- co) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 T
32	Linear viscoelastic properties of hyperbranched polyisobutylene. Journal of Rheology, 2001, 45, 759-772.	1.3	28
33	THE PAYNE EFFECT: PRIMARILY POLYMER-RELATED OR FILLER-RELATED PHENOMENON?. Rubber Chemistry and Technology, 2019, 92, 599-611.	0.6	27
34	Influence of vinyl ester/styrene network structure on thermal and mechanical behavior. Journal of Applied Polymer Science, 2001, 80, 917-927.	1.3	26
35	FLOCCULATION IN ELASTOMERIC POLYMERS CONTAINING NANOPARTICLES: JAMMING AND THE NEW CONCEPT OF FICTIVE DYNAMIC STRAIN. Rubber Chemistry and Technology, 2015, 88, 463-474.	0.6	26
36	Organosilane grafted silica: Quantitative correlation of microscopic surface characters and macroscopic surface properties. Applied Surface Science, 2017, 399, 565-572.	3.1	25

#	Article	IF	Citations
37	Characterizing Distributions of Tensile Strength and Crack Precursor Size to Evaluate Filler Dispersion Effects and Reliability of Rubber. Polymers, 2020, 12, 203.	2.0	25
38	Physical aging behavior of miscible blends containing atactic polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide). Polymer, 2000, 41, 9191-9204.	1.8	24
39	Local segmental relaxation in bidisperse polystyrenes. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2604-2611.	2.4	22
40	Measuring local viscoelastic properties of complex materials with tapping mode atomic force microscopy. Polymer, 2006, 47, 4798-4810.	1.8	22
41	Nanoscale Cooperative Length of Local Segmental Motion in Polybutadiene. Macromolecules, 2004, 37, 4266-4270.	2.2	20
42	Characterizing the Intrinsic Strength (Fatigue Threshold) of Natural Rubber/Butadiene Rubber Blends. Tire Science and Technology, 2019, 47, 292-307.	0.3	19
43	Breadth of the α-Relaxation Function in 1,4-Polybutadiene. Macromolecules, 2000, 33, 1262-1267.	2.2	15
44	Unified application of the coupling model to segmental, Rouse, and terminal dynamics of entangled polymers. Journal of Non-Crystalline Solids, 2006, 352, 342-348.	1.5	15
45	Glass-formation kinetics of miscible blends of atactic polystyrene and poly(2,6-dimethyl-1,4-phenylene) Tj ETQq1	1 <u>0.</u> 7843	14 rgBT /Ove
46	Thermoplastic Elastomers. , 2013, , 591-652.		13
47	Filler Dispersion in Hyperbranched Polyisobutylene. Rubber Chemistry and Technology, 2004, 77, 372-379.	0.6	12
48	Comment on "Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities―[J. Chem. Phys. 117, 10184 (2002)]. Journal of Chemical Physics, 2003, 118, 10351-10352.	1.2	11
49	Recovery of Shear-Modified Polybutadiene Solutions. Rubber Chemistry and Technology, 2006, 79, 267-280.	0.6	11
50	The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method. Advances in Polymer Science, 2020, , 57-83.	0.4	11
51	A Nonequilibrium Model for Particle Networking/Jamming and Time-Dependent Dynamic Rheology of Filled Polymers. Polymers, 2020, 12, 190.	2.0	9
52	Structural Arrest and Thermodynamic Scaling in Filler-Reinforced Polymers. Rubber Chemistry and Technology, 2009, 82, 202-213.	0.6	8
53	A new spectral memory of filled rubbers. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 859-869.	2.4	8
54	Characterisation of cut and chip behaviour for NR, SBR and BR compounds with an instrumented laboratory device. Plastics, Rubber and Composites, 2019, 48, 14-23.	0.9	8

#	Article	IF	CITATIONS
55	Heterogeneity of structural relaxation in a particle-suspension system. Europhysics Letters, 2007, 79, 18001.	0.7	7
56	Incremental, Critical Plane Analysis of Standing Wave Development, Self-Heating, and Fatigue during Regulatory High-Speed Tire Testing Protocols. Tire Science and Technology, 2021, 49, 172-205.	0.3	6
57	Finite Element Modeling and Critical Plane Analysis of a Cut-and-Chip Experiment for Rubber. Tire Science and Technology, 2020, , .	0.3	5
58	Effect of Filler–Polymer Interface on Elastic Properties of Polymer Nanocomposites: A Molecular Dynamics Study. Tire Science and Technology, 2017, 45, 227-241.	0.3	4
59	Glass-like Signatures in the Dynamic Rheology of Particle-Filled Polymers. Macromolecules, 2022, 55, 2729-2738.	2.2	4
60	Processing of Sheath-Core and Matrix-Fibril Fibers Composed of PP and a TLCP. International Polymer Processing, 1997, 12, 354-365.	0.3	3
61	Memory of Prior Dynamic Strain History in Filled Rubbers. Rubber Chemistry and Technology, 2010, 83, 149-159.	0.6	3
62	Comparison of the transient stress–strain response of rubber to its linear dynamic behavior. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1195-1202.	2.4	3
63	Dynamic Mechanical Properties. , 2014, , 1-9.		3
64	Dynamic Mechanical Properties. , 2015, , 647-654.		3
65	Effect of Silica Nanoparticles on the Local Segmental Dynamics in Polyvinylacetate. AIP Conference Proceedings, 2008, , .	0.3	1
66	Structural Relaxation and Fragility of Glass-Forming Miscible Blends Composed of Atactic Polystyrene and Poly(2,6-dimethyl-1,4-phenylene oxide). ACS Symposium Series, 1999, , 133-143.	0.5	O
67	Assignment of Effective Network Chains in Cured Rubbers Derived from Chemical Crosslinking, Entanglements, Polymer End Linking to Carbon Black and Filler Interaction: VII. Tensile Retraction Measurements. Rubber Chemistry and Technology, 2006, 79, 338-365.	0.6	0
68	Christopher G. Robertson Guest Editor. Rubber Chemistry and Technology, 2017, 90, G2-G2.	0.6	0