
Denis Jacquemin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414896/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chemical Society Reviews, 2013, 42, 845-856.	38.1	1,424
2	Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. Journal of Chemical Theory and Computation, 2009, 5, 2420-2435.	5.3	942
3	TD-DFT benchmarks: A review. International Journal of Quantum Chemistry, 2013, 113, 2019-2039.	2.0	938
4	TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes:  Conventional versus Long-Range Hybrids. Journal of Chemical Theory and Computation, 2008, 4, 123-135.	5.3	766
5	Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Pushâ^'Pull Ï€-Conjugated Systemsâ€. Journal of Physical Chemistry A, 2000, 104, 4755-4763.	2.5	501
6	Accurate Simulation of Optical Properties in Dyes. Accounts of Chemical Research, 2009, 42, 326-334.	15.6	435
7	TD-DFT Assessment of Functionals for Optical 0–0 Transitions in Solvated Dyes. Journal of Chemical Theory and Computation, 2012, 8, 2359-2372.	5.3	403
8	On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies. Journal of Chemical Theory and Computation, 2010, 6, 2071-2085.	5.3	383
9	Enhanced Efficiency of Organic Dye-Sensitized Solar Cells: Triphenylamine Derivatives. Journal of Physical Chemistry C, 2009, 113, 16821-16833.	3.1	328
10	Multiphotochromic molecular systems. Chemical Society Reviews, 2015, 44, 3719-3759.	38.1	302
11	Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Physical Chemistry Chemical Physics, 2011, 13, 16987.	2.8	301
12	Dye chemistry with time-dependent density functional theory. Physical Chemistry Chemical Physics, 2014, 16, 14334-14356.	2.8	294
13	Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. Journal of Chemical Physics, 2007, 126, 144105.	3.0	290
14	What is the "best―atomic charge model to describe through-space charge-transfer excitations?. Physical Chemistry Chemical Physics, 2012, 14, 5383.	2.8	290
15	Taking Up the Cyanine Challenge with Quantum Tools. Accounts of Chemical Research, 2015, 48, 530-537.	15.6	254
16	Thioindigo Dyes:Â Highly Accurate Visible Spectra with TD-DFT. Journal of the American Chemical Society, 2006, 128, 2072-2083.	13.7	245
17	Choosing a Functional for Computing Absorption and Fluorescence Band Shapes with TD-DFT. Journal of Chemical Theory and Computation, 2013, 9, 2749-2760.	5.3	243
18	Through-Space Charge Transfer in Rod-Like Molecules: Lessons from Theory. Journal of Physical Chemistry C, 2012, 116, 11946-11955.	3.1	222

#	Article	IF	CITATIONS
19	A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks. Journal of Chemical Theory and Computation, 2018, 14, 4360-4379.	5.3	211
20	0–0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/ <i>GW</i> formalisms for 80 Real-Life Compounds. Journal of Chemical Theory and Computation, 2015, 11, 5340-5359.	5.3	208
21	Assessment of Functionals for TD-DFT Calculations of Singletâ^'Triplet Transitions. Journal of Chemical Theory and Computation, 2010, 6, 1532-1537.	5.3	194
22	Second-Order NLO Switches from Molecules to Polymer Films Based on Photochromic Cyclometalated Platinum(II) Complexes. Journal of the American Chemical Society, 2014, 136, 5367-5375.	13.7	184
23	Going beyond the vertical approximation with timeâ€dependent density functional theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 460-486.	14.6	174
24	Benchmarking the Bethe–Salpeter Formalism on a Standard Organic Molecular Set. Journal of Chemical Theory and Computation, 2015, 11, 3290-3304.	5.3	172
25	Tuning ESIPT fluorophores into dual emitters. Chemical Science, 2016, 7, 3763-3774.	7.4	168
26	Single Molecule Multiphotochromism with Diarylethenes. Accounts of Chemical Research, 2012, 45, 1173-1182.	15.6	166
27	Solvent polarity scales: determination of new <i>E</i> _T (30) values for 84 organic solvents. Journal of Physical Organic Chemistry, 2014, 27, 512-518.	1.9	161
28	First hyperpolarizability of polymethineimine with long-range corrected functionals. Journal of Chemical Physics, 2007, 126, 191108.	3.0	158
29	The Bethe–Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. Chemical Society Reviews, 2018, 47, 1022-1043.	38.1	158
30	Towards new efficient dye-sensitised solar cells. Energy and Environmental Science, 2010, 3, 891.	30.8	156
31	Revisiting the optical signatures of BODIPY with ab initio tools. Chemical Science, 2013, 4, 1950.	7.4	140
32	Performance of an Optimally Tuned Range-Separated Hybrid Functional for 0–0 Electronic Excitation Energies. Journal of Chemical Theory and Computation, 2014, 10, 1677-1685.	5.3	135
33	White Emitters by Tuning the Excitedâ€State Intramolecular Protonâ€Transfer Fluorescence Emission in 2â€(2′â€Hydroxybenzofuran)benzoxazole Dyes. Chemistry - A European Journal, 2014, 20, 12843-12857.	3.3	135
34	Assessment of the ωB97 family for excited-state calculations. Theoretical Chemistry Accounts, 2011, 128, 127-136.	1.4	132
35	Bond Length Alternation of Conjugated Oligomers: Wave Function and DFT Benchmarks. Journal of Chemical Theory and Computation, 2011, 7, 369-376.	5.3	131
36	Planar vs. twisted intramolecular charge transfer mechanism in Nile Red: new hints from theory. Physical Chemistry Chemical Physics, 2010, 12, 8016.	2.8	126

#	Article	IF	CITATIONS
37	Verdict: Time-Dependent Density Functional Theory "Not Guilty―of Large Errors for Cyanines. Journal of Chemical Theory and Computation, 2012, 8, 1255-1259.	5.3	122
38	Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chemical Physics, 2010, 376, 56-68.	1.9	120
39	Assessment of long-range corrected functionals performance for n→ï€* transitions in organic dyes. Journal of Chemical Physics, 2007, 127, 094102.	3.0	119
40	A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules. Journal of Chemical Theory and Computation, 2020, 16, 1711-1741.	5.3	119
41	Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: Effects of the anchoring groups. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 235-242.	3.9	117
42	Reference Energies for Double Excitations. Journal of Chemical Theory and Computation, 2019, 15, 1939-1956.	5.3	116
43	Time-dependent density functional theory investigation of the absorption, fluorescence, and phosphorescence spectra of solvated coumarins. Journal of Chemical Physics, 2006, 125, 164324.	3.0	115
44	Theoretical investigation of substituted anthraquinone dyes. Journal of Chemical Physics, 2004, 121, 1736-1743.	3.0	113
45	A TD-DFT study of the absorption spectra of fast dye salts. Chemical Physics Letters, 2005, 410, 254-259.	2.6	113
46	TD-DFT Vibronic Couplings in Anthraquinones: From Basis Set and Functional Benchmarks to Applications for Industrial Dyes. Journal of Chemical Theory and Computation, 2011, 7, 1882-1892.	5.3	113
47	Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description. Journal of Chemical Theory and Computation, 2015, 11, 5782-5790.	5.3	112
48	Cyclometalated Ir(<scp>iii</scp>) complexes with styryl-BODIPY ligands showing near IR absorption/emission: preparation, study of photophysical properties and application as photodynamic/luminescence imaging materials. Journal of Materials Chemistry B, 2014, 2, 2838-2854.	5.8	111
49	Substitution and chemical environment effects on the absorption spectrum of indigo. Journal of Chemical Physics, 2006, 124, 074104.	3.0	110
50	Molecular Structure–Intersystem Crossing Relationship of Heavy-Atom-Free BODIPY Triplet Photosensitizers. Journal of Organic Chemistry, 2015, 80, 5958-5963.	3.2	109
51	Ab initio calculations of the colour of closed-ring diarylethenes: TD-DFT estimates for molecular switches. Chemical Physics Letters, 2006, 429, 147-152.	2.6	106
52	On the Computation of Adiabatic Energies in Aza-Boron-Dipyrromethene Dyes. Journal of Chemical Theory and Computation, 2012, 8, 3303-3313.	5.3	102
53	Aza-boron-dipyrromethene dyes: TD-DFT benchmarks, spectral analysis and design of original near-IR structures. Physical Chemistry Chemical Physics, 2012, 14, 157-164.	2.8	100
54	The Quest for Highly Accurate Excitation Energies: A Computational Perspective. Journal of Physical Chemistry Letters, 2020, 11, 2374-2383.	4.6	100

#	Article	IF	CITATIONS
55	<i>N</i> , <i>N</i> ′-Disubstituted Indigos as Readily Available Red-Light Photoswitches with Tunable Thermal Half-Lives. Journal of the American Chemical Society, 2017, 139, 15205-15211.	13.7	99
56	Assessing the Importance of Proton Transfer Reactions in DNA. Accounts of Chemical Research, 2014, 47, 2467-2474.	15.6	98
57	Improving the Accuracy of Excited-State Simulations of BODIPY and Aza-BODIPY Dyes with a Joint SOS-CIS(D) and TD-DFT Approach. Journal of Chemical Theory and Computation, 2014, 10, 4574-4582.	5.3	98
58	Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chemical Physics Letters, 2008, 465, 226-229.	2.6	96
59	The Bethe–Salpeter Equation Formalism: From Physics to Chemistry. Journal of Physical Chemistry Letters, 2020, 11, 7371-7382.	4.6	96
60	Is the Tamm-Dancoff Approximation Reliable for the Calculation of Absorption and Fluorescence Band Shapes?. Journal of Chemical Theory and Computation, 2013, 9, 4517-4525.	5.3	95
61	Toward a Theoretical Quantitative Estimation of the λmax of Anthraquinones-Based Dyes. Journal of Chemical Theory and Computation, 2006, 2, 434-440.	5.3	94
62	Expanding the Polymethine Paradigm: Evidence for the Contribution of a Bis-Dipolar Electronic Structure. Journal of Physical Chemistry A, 2014, 118, 4038-4047.	2.5	91
63	Ab Initio Coupled Hartreeâ^'Fock Investigation of the Static First Hyperpolarizability of Model all-trans-Polymethineimine Oligomers of Increasing Size. Journal of Physical Chemistry A, 1997, 101, 3158-3165.	2.5	88
64	Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe–Salpeter Approach. Journal of Chemical Theory and Computation, 2014, 10, 1212-1218.	5.3	88
65	Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Transactions, 2015, 44, 8346-8355.	3.3	88
66	Shedding Light on the Photoisomerization Pathway of Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society, 2017, 139, 15596-15599.	13.7	88
67	Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments. Journal of Chemical Theory and Computation, 2021, 17, 1117-1132.	5.3	88
68	<scp>QUESTDB</scp> : A database of highly accurate excitation energies for the electronic structure community. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1517.	14.6	84
69	Impact of Vibronic Couplings on Perceived Colors: Two Anthraquinones as a Working Example. Journal of Physical Chemistry Letters, 2012, 3, 468-471.	4.6	82
70	Molecular Engineering of Excited-state Intramolecular Proton Transfer (ESIPT) Dual and Triple Emitters. Chemistry Letters, 2018, 47, 1083-1089.	1.3	82
71	Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nature Communications, 2020, 11, 662.	12.8	81
72	General Principles for the Design of Visibleâ€Lightâ€Responsive Photoswitches: Tetraâ€ <i>ortho</i> â€Chloroâ€Azobenzenes. Angewandte Chemie - International Edition, 2020, 59, 21663-21670.	13.8	80

#	Article	IF	CITATIONS
73	TD-DFT Investigation of the UV Spectra of Pyranone Derivatives. Journal of Physical Chemistry A, 2006, 110, 8144-8150.	2.5	78
74	ls the Bethe–Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD. Journal of Physical Chemistry Letters, 2017, 8, 1524-1529.	4.6	78
75	Assessment of Several Hybrid DFT Functionals for the Evaluation of Bond Length Alternation of Increasingly Long Oligomers. Journal of Physical Chemistry A, 2006, 110, 5952-5959.	2.5	77
76	Intermolecular Proton Transfer in Microhydrated Guanineâ^'Cytosine Base Pairs: a New Mechanism for Spontaneous Mutation in DNA. Journal of Physical Chemistry A, 2009, 113, 10549-10556.	2.5	77
77	Boron Difluoride Curcuminoid Fluorophores with Enhanced Twoâ€Photon Excited Fluorescence Emission and Versatile Livingâ€Cell Imaging Properties. Chemistry - A European Journal, 2016, 22, 5219-5232.	3.3	77
78	Second Generation of Diketopyrrolopyrrole Dyes for NiO-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 7923-7940.	3.1	77
79	An ab Initio Study of the Absorption Spectra of Indirubin, Isoindigo, and Related Derivatives. Journal of Physical Chemistry A, 2006, 110, 5629-5635.	2.5	76
80	On the TD-DFT Accuracy in Determining Single and Double Bonds in Excited-State Structures of Organic Molecules. Journal of Physical Chemistry A, 2010, 114, 13402-13410.	2.5	76
81	Copper-catalyzed free-radical C–H arylation of pyrroles. Chemical Communications, 2014, 50, 5236-5238.	4.1	76
82	The short device lifetimes of blue PhOLEDs: insights into the photostability of blue Ir(<scp>iii</scp>) complexes. Chemical Science, 2017, 8, 7844-7850.	7.4	76
83	Proton-Stabilized Photochemically Reversible <i>E</i> / <i>Z</i> Isomerization of Spiropyrans. Journal of Physical Chemistry B, 2018, 122, 6423-6430.	2.6	76
84	Correlated frequency-dependent electronic first hyperpolarizability of small push–pull conjugated chains. Chemical Physics Letters, 2000, 319, 327-334.	2.6	75
85	Boranil and Related NBO Dyes: Insights From Theory. Journal of Chemical Theory and Computation, 2013, 9, 3127-3135.	5.3	74
86	Accuracy of TD-DFT Geometries: A Fresh Look. Journal of Chemical Theory and Computation, 2018, 14, 3715-3727.	5.3	74
87	Long-Lived Charge Separated State in NiO-Based p-Type Dye-Sensitized Solar Cells with Simple Cyclometalated Iridium Complexes. Journal of Physical Chemistry Letters, 2014, 5, 2254-2258.	4.6	73
88	Diketopyrrolopyrrole derivatives for efficient NiO-based dye-sensitized solar cells. Chemical Communications, 2013, 49, 8018.	4.1	72
89	Effects of Hydration on the Proton Transfer Mechanism in the Adenineâ^Thymine Base Pair. Journal of Physical Chemistry A, 2009, 113, 7892-7898.	2.5	71
90	Absorption and emission spectra in gas-phase and solution using TD-DFT: Formaldehyde and benzene as case studies. Chemical Physics Letters, 2006, 421, 272-276.	2.6	70

#	Article	IF	CITATIONS
91	A water soluble probe with near infrared two-photon absorption and polarity-induced fluorescence for cerebral vascular imaging. Chemical Science, 2013, 4, 2833.	7.4	70
92	General Approach To Compute Phosphorescent OLED Efficiency. Journal of Physical Chemistry C, 2018, 122, 6340-6347.	3.1	70
93	A Blue Diketopyrrolopyrrole Sensitizer with High Efficiency in Nickelâ€Oxideâ€based Dyeâ€Sensitized Solar Cells. ChemSusChem, 2017, 10, 2618-2625.	6.8	69
94	Triplet state CPL active helicene–dithiolene platinum bipyridine complexes. Chemical Communications, 2017, 53, 9210-9213.	4.1	69
95	Geometry, dipole moment, polarizability and first hyperpolarizability of polymethineimine: An assessment of electron correlation contributions. Journal of Chemical Physics, 2004, 121, 4389-4396.	3.0	68
96	A Database of Dispersion-Induction DI, Electrostatic ES, and Hydrogen Bonding α ₁ and β ₁ Solvent Parameters and Some Applications to the Multiparameter Correlation Analysis of Solvent Effects. Journal of Physical Chemistry B, 2015, 119, 3174-3184.	2.6	68
97	Zwitterionic [4]helicene: a water-soluble and reversible pH-triggered ECD/CPL chiroptical switch in the UV and red spectral regions. Organic and Biomolecular Chemistry, 2016, 14, 4590-4594.	2.8	67
98	A compact diketopyrrolopyrrole dye as efficient sensitizer in titanium dioxide dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 226, 9-15.	3.9	66
99	On the Fineâ€Tuning of the Excitedâ€State Intramolecular Proton Transfer (ESIPT) Process in 2â€{2â€Aydroxybenzofuran)benzazole (HBBX) Dyes. Chemistry - A European Journal, 2017, 23, 7324-7336.	3.3	66
100	Ab initiostatic polarizability and first hyperpolarizability of model polymethineimine chains. II. Effects of conformation and of substitution by donor/acceptor end groups. Journal of Chemical Physics, 1997, 107, 5076-5087.	3.0	65
101	Design of New Triphenylamine-Sensitized Solar Cells: A Theoretical Approach. Environmental Science & Technology, 2010, 44, 5666-5671.	10.0	65
102	Benchmark of Bethe-Salpeter for Triplet Excited-States. Journal of Chemical Theory and Computation, 2017, 13, 767-783.	5.3	65
103	Determination of a Solvent Hydrogen-Bond Acidity Scale by Means of the Solvatochromism of Pyridinium- <i>N</i> -phenolate Betaine Dye 30 and PCM-TD-DFT Calculations. Journal of Physical Chemistry B, 2014, 118, 4605-4614.	2.6	64
104	The geometries, absorption and fluorescence wavelengths of solvated fluorescent coumarins: A CIS and TD-DFT comparative study. Chemical Physics Letters, 2007, 438, 208-212.	2.6	63
105	Excited-states of BODIPY–cyanines: ultimate TD-DFT challenges?. RSC Advances, 2014, 4, 49449-49456.	3.6	63
106	Red Thermally Activated Delayed Fluorescence and the Intersystem Crossing Mechanisms in Compact Naphthalimide–Phenothiazine Electron Donor/Acceptor Dyads. Journal of Physical Chemistry C, 2019, 123, 30171-30186.	3.1	63
107	A qualitative failure of B3LYP for textbook organic reactions. Physical Chemistry Chemical Physics, 2012, 14, 7170.	2.8	62
108	Ab Initio Investigation of the n → π* Transitions in Thiocarbonyl Dyes. Journal of Physical Chemistry A, 2006, 110, 9145-9152.	2.5	61

#	Article	IF	CITATIONS
109	Boron difluorides with formazanate ligands: redox-switchable fluorescent dyes with large stokes shifts. Dalton Transactions, 2016, 45, 9477-9484.	3.3	61
110	A generalized Romberg differentiation procedure for calculation of hyperpolarizabilities. Computational and Theoretical Chemistry, 2007, 847, 39-46.	1.5	59
111	On the geometries and UV/Vis spectra of substituted trans-azobenzenes. Chemical Physics Letters, 2007, 435, 257-262.	2.6	58
112	Absorption and emission spectra of 1,8-naphthalimide fluorophores: A PCM-TD-DFT investigation. Chemical Physics, 2010, 372, 61-66.	1.9	58
113	Cross-Comparisons between Experiment, TD-DFT, CC, and ADC for Transition Energies. Journal of Chemical Theory and Computation, 2019, 15, 4581-4590.	5.3	58
114	Use of Pyrimidine and Pyrazine Bridges as a Design Strategy To Improve the Performance of Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 45171-45179.	8.0	58
115	Spectral properties of self-assembled squaraine–tetralactam: a theoretical assessment. Physical Chemistry Chemical Physics, 2009, 11, 1258.	2.8	57
116	Excited-State Geometries of Heteroaromatic Compounds: A Comparative TD-DFT and SAC-CI Study. Journal of Chemical Theory and Computation, 2013, 9, 2368-2379.	5.3	57
117	On the TD-DFT UV/vis spectra accuracy: the azoalkanes. Theoretical Chemistry Accounts, 2008, 120, 405-410.	1.4	56
118	Sequential double second-order nonlinear optical switch by an acido-triggered photochromic cyclometallated platinum(<scp>ii</scp>) complex. Chemical Communications, 2015, 51, 7805-7808.	4.1	56
119	Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods. Journal of Chemical Theory and Computation, 2016, 12, 2652-2660.	5.3	56
120	Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals. Journal of Chemical Theory and Computation, 2020, 16, 3720-3736.	5.3	56
121	Electron correlation effects upon the static (hyper)polarizabilities of push-pull conjugated polyenes and polyynes. , 1997, 65, 679-688.		55
122	Substitution effects on the visible spectra of 1,4-diNHPh-9,10-anthraquinones. Chemical Physics Letters, 2005, 405, 429-433.	2.6	55
123	TD-DFT Assessment of the Excited State Intramolecular Proton Transfer in Hydroxyphenylbenzimidazole (HBI) Dyes. Journal of Physical Chemistry B, 2015, 119, 2180-2192.	2.6	55
124	Efficient Intersystem Crossing in Heavy-Atom-Free Perylenebisimide Derivatives. Journal of Physical Chemistry C, 2016, 120, 10162-10175.	3.1	55
125	The Bethe–Salpeter formalism with polarisable continuum embedding: reconciling linear-response and state-specific features. Chemical Science, 2018, 9, 4430-4443.	7.4	55
126	Electronic Communication between two [10]cycloparaphenylenes and Bis(azafullerene) (C ₅₉ N) ₂ Induced by Cooperative Complexation. Angewandte Chemie - International Edition, 2018, 57, 6930-6934.	13.8	55

#	Article	IF	CITATIONS
127	Is solvated trans-azobenzene twisted or planar?. Chemical Physics Letters, 2006, 417, 190-195.	2.6	54
128	Modeling optical signatures and excited-state reactivities of substituted hydroxyphenylbenzoxazole (HBO) ESIPT dyes. Physical Chemistry Chemical Physics, 2014, 16, 1319-1321.	2.8	53
129	Electron nuclear dynamics of proton collisions with methane at 30 eV. Journal of Chemical Physics, 1997, 107, 6146-6155.	3.0	52
130	Photochromic properties of dithienylazoles and other conjugated diarylethenes. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192, 211-219.	3.9	52
131	Combined effect of stacking and solvation on the spontaneous mutation in DNA. Physical Chemistry Chemical Physics, 2011, 13, 14584.	2.8	52
132	Photoswitching of the second-order nonlinearity of a tetrahedral octupolar multi DTE-based copper(i) complex. Chemical Communications, 2012, 48, 10395.	4.1	52
133	Diketopyrrolopyrrole–Porphyrin Conjugates as Broadly Absorbing Sensitizers for Dye ensitized Solar Cells. ChemSusChem, 2012, 5, 1568-1577.	6.8	52
134	Optical Signatures of OBO Fluorophores: A Theoretical Analysis. Journal of Chemical Theory and Computation, 2014, 10, 805-815.	5.3	52
135	Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Farâ€Red (Polarized) Luminescence. Chemistry - A European Journal, 2016, 22, 18394-18403.	3.3	52
136	Accurate Excited-State Geometries: A CASPT2 and Coupled-Cluster Reference Database for Small Molecules. Journal of Chemical Theory and Computation, 2017, 13, 6237-6252.	5.3	52
137	Assessment of recently developed density functional approaches for the evaluation of the bond length alternation in polyacetylene. Chemical Physics Letters, 2005, 405, 376-381.	2.6	51
138	Theoretical investigations of the UV spectra of coumarin derivatives. Chemical Physics Letters, 2005, 415, 20-24.	2.6	51
139	Reference Energies for Intramolecular Charge-Transfer Excitations. Journal of Chemical Theory and Computation, 2021, 17, 3666-3686.	5.3	51
140	MÃ,ller–Plesset evaluation of the static first hyperpolarizability of polymethineimine. Chemical Physics Letters, 1998, 284, 24-30.	2.6	50
141	Second-Order ab Initio MÃ,llerâ^'Plesset Study of Optimum Chain Length for Total (Electronic Plus) Tj ETQq1 1 0. 9748-9755.	784314 rg 2.5	gBT /Overlock 50
142	Interplay Between Electronic and Steric Effects in Multiphotochromic Diarylethenes. Journal of Physical Chemistry C, 2011, 115, 9193-9203.	3.1	50
143	Using Timeâ€Dependent Density Functional Theory to Probe the Nature of Donor–Acceptor Stenhouse Adduct Photochromes. ChemPhysChem, 2016, 17, 1846-1851.	2.1	50
144	Arylazoindazole Photoswitches: Facile Synthesis and Functionalization via S _N Ar Substitution. Journal of the American Chemical Society, 2017, 139, 3328-3331.	13.7	50

#	Article	IF	CITATIONS
145	Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes. Journal of Chemical Physics, 2018, 149, 034108.	3.0	50
146	Doubly Closing or Not? Theoretical Analysis for Coupled Photochromes. Journal of Physical Chemistry C, 2010, 114, 9489-9497.	3.1	49
147	Perylene-Derived Triplet Acceptors with Optimized Excited State Energy Levels for Triplet–Triplet Annihilation Assisted Upconversion. Journal of Organic Chemistry, 2014, 79, 2038-2048.	3.2	48
148	Isoindigo derivatives for application in p-type dye sensitized solar cells. RSC Advances, 2015, 5, 85530-85539.	3.6	48
149	Symmetry Breaking in Pyrrolo[3,2â€ <i>b</i>]pyrroles: Synthesis, Solvatofluorochromism and Twoâ€photon Absorption. Chemistry - an Asian Journal, 2017, 12, 1736-1748.	3.3	48
150	First-principles investigation of the double ESIPT process in a thiophene-based dye. Physical Chemistry Chemical Physics, 2019, 21, 2307-2317.	2.8	48
151	Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules, 2022, 27, 2443.	3.8	48
152	Excitation spectra of nitro-diphenylaniline: Accurate time-dependent density functional theory predictions for charge-transfer dyes. Journal of Chemical Physics, 2006, 124, 204321.	3.0	47
153	Synthesis, photovoltaic performances and TD-DFT modeling of push–pull diacetylide platinum complexes in TiO ₂ based dye-sensitized solar cells. Dalton Transactions, 2014, 43, 11233-11242.	3.3	47
154	Electric field induced DNA damage: an open door for selective mutations. Chemical Communications, 2013, 49, 7578.	4.1	46
155	Combining the <i>GW</i> formalism with the polarizable continuum model: A state-specific non-equilibrium approach. Journal of Chemical Physics, 2016, 144, 164106.	3.0	46
156	Electric-field induced mutation of DNA: a theoretical investigation of the GC base pair. Physical Chemistry Chemical Physics, 2013, 15, 4548.	2.8	45
157	Diketopyrrolopyrrole-zinc porphyrin, a tuned panchromatic association for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 7572.	10.3	45
158	The Influence of the π-Conjugated Spacer on Photophysical Properties of Difluoroboranyls Derived from Amides Carrying a Donor Group. Journal of Organic Chemistry, 2016, 81, 2280-2292.	3.2	45
159	Theoretical investigation of the absorption spectrum of thioindigo dyes. Computational and Theoretical Chemistry, 2005, 731, 67-72.	1.5	44
160	Ab initio tools for the accurate prediction of the visible spectra of anthraquinones. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 334-341.	3.9	44
161	Electronic Band Shapes Calculated with Optimally Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 2014, 10, 4599-4608.	5.3	44
162	Synthesis and properties of push–pull porphyrins as sensitizers for NiO based dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 3908-3917.	10.3	44

#	Article	IF	CITATIONS
163	Assessment of the Accuracy of the Bethe–Salpeter (BSE/ <i>GW</i>) Oscillator Strengths. Journal of Chemical Theory and Computation, 2016, 12, 3969-3981.	5.3	44
164	A de novo strategy for predictive crystal engineering to tune excitonic coupling. Nature Communications, 2019, 10, 2048.	12.8	44
165	Fluorescence of 1,8-naphthalimide: A PCM-TD-DFT investigation. Chemical Physics Letters, 2007, 448, 3-6.	2.6	43
166	Shoulder function after latissimus dorsi transfer in breast reconstruction. Clinical Physiology and Functional Imaging, 2010, 30, 406-412.	1.2	43
167	Controlling Triplet–Triplet Annihilation Upconversion by Tuning the PET in Aminomethyleneanthracene Derivatives. Journal of Physical Chemistry C, 2015, 119, 23801-23812.	3.1	43
168	Homochiral Emissive Λ ₈ ―and Δ ₈ â€{Ir ₈ Pd ₄] ^{16+Supramolecular Cages. Chemistry - A European Journal, 2017, 23, 14358-14366.}	> 3.3	43
169	Keto-polymethines: a versatile class of dyes with outstanding spectroscopic properties for in cellulo and in vivo two-photon microscopy imaging. Chemical Science, 2017, 8, 381-394.	7.4	43
170	What is the Key for Accurate Absorption and Emission Calculations, Energy or Geometry?. Journal of Chemical Theory and Computation, 2018, 14, 1534-1543.	5.3	43
171	Theoretical 0–0 Energies with Chemical Accuracy. Journal of Physical Chemistry Letters, 2018, 9, 4646-4651.	4.6	43
172	Microhydration of Protonated Glycine:  An <i> ab initio</i> Family Tree. Journal of Physical Chemistry B, 2008, 112, 2430-2438.	2.6	42
173	Evaluating 0–0 Energies with Theoretical Tools: A Short Review. ChemPhotoChem, 2019, 3, 684-696.	3.0	42
174	Correlated electron-hole mechanism for molecular doping in organic semiconductors. Physical Review Materials, 2017, 1, .	2.4	42
175	Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity. Chemical Physics Letters, 2007, 450, 119-122.	2.6	41
176	Designing Efficient Azobenzene and Azothiophene Nonlinear Optical Photochromes. Journal of Physical Chemistry C, 2014, 118, 28831-28841.	3.1	41
177	Excited-State Dipole and Quadrupole Moments: TD-DFT versus CC2. Journal of Chemical Theory and Computation, 2016, 12, 3993-4003.	5.3	41
178	Expanding the Breadth of 4â€Aminoâ€1,8â€naphthalimide Photophysical Properties through Substitution of the Naphthalimide Core. Chemistry - A European Journal, 2018, 24, 5569-5573.	3.3	41
179	Photochromic DTE-Substituted-1,3-di(2-pyridyl)benzene Platinum(II) Complexes: Photomodulation of Luminescence and Second-Order Nonlinear Optical Properties. Inorganic Chemistry, 2018, 57, 7051-7063.	4.0	41
180	Comparison of theoretical approaches for predicting the UV/Vis spectra of anthraquinones. Molecular Physics, 2007, 105, 325-331.	1.7	40

#	Article	IF	CITATIONS
181	Borondifluoride complexes of hemicurcuminoids as bio-inspired push–pull dyes for bioimaging. Organic and Biomolecular Chemistry, 2016, 14, 1311-1324.	2.8	40
182	New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides. Bioorganic and Medicinal Chemistry, 2011, 19, 7623-7634.	3.0	39
183	Inverse versus Normal Dithienylethenes: Computational Investigation of the Photocyclization Reaction. Journal of Physical Chemistry Letters, 2013, 4, 2190-2196.	4.6	39
184	Absorption spectra of azobenzenes simulated with timeâ€dependent density functional theory. International Journal of Quantum Chemistry, 2011, 111, 4224-4240.	2.0	38
185	Dye-Sensitized Photoelectrosynthesis Cells for Benzyl Alcohol Oxidation Using a Zinc Porphyrin Sensitizer and TEMPO Catalyst. ACS Catalysis, 2021, 11, 12075-12086.	11.2	38
186	TDâ^'DFT Investigation of Diarylethene Dyes with Cyclopentene, Dihydrothiophene, and Dihydropyrrole Bridges. Journal of Physical Chemistry A, 2007, 111, 5528-5535.	2.5	37
187	TD-DFT benchmark for indigo $ ilde{A}^-$ d dyes. Computational and Theoretical Chemistry, 2009, 914, 100-105.	1.5	37
188	Long-Range Electron Transfer in Zinc-Phthalocyanine-Oligo(Phenylene-ethynylene)-Based Donor-Bridge-Acceptor Dyads. Inorganic Chemistry, 2012, 51, 11500-11512.	4.0	37
189	Cisplatin cytotoxicity: a theoretical study of induced mutations. Physical Chemistry Chemical Physics, 2012, 14, 12457.	2.8	37
190	How DNA is damaged by external electric fields: selective mutation vs. random degradation. Physical Chemistry Chemical Physics, 2014, 16, 8243-8246.	2.8	37
191	Highly fluorescent extended 2-(2′-hydroxyphenyl)benzazole dyes: synthesis, optical properties and first-principle calculations. Chemical Communications, 2016, 52, 9216-9219.	4.1	37
192	Photophysical Properties of Phenacylphenantridine Difluoroboranyls: Effect of Substituent and Double Benzannulation. Journal of Organic Chemistry, 2017, 82, 1529-1537.	3.2	37
193	Unraveling the Two-Photon and Excited-State Absorptions of Aza-BODIPY Dyes for Optical Power Limiting in the SWIR Band. Journal of Physical Chemistry C, 2019, 123, 23661-23673.	3.1	37
194	Basis set and functional effects on excitedâ€state properties: Three bicyclic chromogens as working examples. International Journal of Quantum Chemistry, 2012, 112, 2135-2141.	2.0	36
195	The First Hexadithienyletheneâ€Substituted Tris(bipyridine)metal Complexes as Quadratic NLO Photoswitches: Combined Experimental and DFT Studies. Chemistry - A European Journal, 2013, 19, 5845-5849.	3.3	36
196	Heck–Matsuda Arylation of Olefins Through a Bicatalytic Approach: Improved Procedures and Rationalization. Advanced Synthesis and Catalysis, 2014, 356, 1065-1071.	4.3	36
197	New insights into the by-product fatigue mechanism of the photo-induced ring-opening in diarylethenes. Physical Chemistry Chemical Physics, 2014, 16, 18463-18471.	2.8	36
198	Benchmark Study on the Triplet Excited-State Geometries and Phosphorescence Energies of Heterocyclic Compounds: Comparison Between TD-PBEO and SAC-CI. Journal of Chemical Theory and Computation, 2014, 10, 3969-3979.	5.3	36

#	Article	IF	CITATIONS
199	Simple Protocol for Capturing Both Linear-Response and State-Specific Effects in Excited-State Calculations with Continuum Solvation Models. Journal of Chemical Theory and Computation, 2021, 17, 5155-5164.	5.3	36
200	Dual Solution-/Solid-State Emissive Excited-State Intramolecular Proton Transfer (ESIPT) Dyes: A Combined Experimental and Theoretical Approach. Journal of Organic Chemistry, 2021, 86, 17606-17619.	3.2	36
201	DFT and TD-DFT investigation of IR and UV spectra of solvated molecules: Comparison of two SCRF continuum models. International Journal of Quantum Chemistry, 2007, 107, 574-585.	2.0	35
202	Chemically Accurate 0–0 Energies with Not-so-Accurate Excited State Geometries. Journal of Chemical Theory and Computation, 2019, 15, 2481-2491.	5.3	35
203	Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies. Journal of Chemical Theory and Computation, 2022, 18, 2418-2436.	5.3	35
204	Second-order nonlinear optical coefficient of polyphosphazene-based materials: A theoretical study. Journal of Chemical Physics, 2004, 120, 9401-9409.	3.0	34
205	Time-dependent density functional theory determination of the absorption spectra of naphthoquinones. Chemical Physics, 2006, 328, 324-332.	1.9	34
206	Delocalisation in conjugated triazene chromophores: Insights from theory. Chemical Physics Letters, 2008, 451, 37-42.	2.6	34
207	Fast and Reliable Theoretical Determination of p <i>K</i> _a * for Photoacids. Journal of Physical Chemistry A, 2008, 112, 794-796.	2.5	34
208	Double proton transfer mechanism in the adenine–uracil base pair and spontaneous mutation in RNA duplex. Chemical Physics Letters, 2009, 484, 64-68.	2.6	34
209	Spectral Properties of Spirooxazine Photochromes: TD-DFT Insights. Journal of Physical Chemistry A, 2009, 113, 13004-13012.	2.5	34
210	Strategies for Designing Diarylethenes as Efficient Nonlinear Optical Switches. Journal of Physical Chemistry C, 2014, 118, 4334-4345.	3.1	34
211	Combining the Bethe–Salpeter Formalism with Time-Dependent DFT Excited-State Forces to Describe Optical Signatures: NBO Fluoroborates as Working Examples. Journal of Chemical Theory and Computation, 2014, 10, 4548-4556.	5.3	34
212	Natural Born Laser Dyes: Excited-State Intramolecular Proton Transfer (ESIPT) Emitters and Their Use in Random Lasing Studies. Nanomaterials, 2019, 9, 1093.	4.1	34
213	Impact of tautomers on the absorption spectra of neutral and anionic alizarin and quinizarin dyes. Computational and Theoretical Chemistry, 2009, 901, 24-30.	1.5	33
214	Benchmarking DFT and TD-DFT Functionals for the Ground and Excited States of Hydrogen-Rich Peptide Radicals. Journal of Chemical Theory and Computation, 2014, 10, 3308-3318.	5.3	33
215	Fluorescence in Rhoda- and Iridacyclopentadienes Neglecting the Spin–Orbit Coupling of the Heavy Atom: The Ligand Dominates. Inorganic Chemistry, 2014, 53, 7055-7069.	4.0	33
216	Excited State Dipole Moments in Solution: Comparison between State-Specific and Linear-Response TD-DFT Values. Journal of Chemical Theory and Computation, 2018, 14, 1544-1553.	5.3	33

#	Article	IF	CITATIONS
217	Impact of Heteroatom Substitution on Dualâ€State Emissive Rigidified 2â€(2'â€hydroxyphenyl)benzazole Dyo Towards Ultraâ€Bright ESIPT Fluorophores**. Chemistry - A European Journal, 2021, 27, 3483-3495.	es: 3.3	33
218	Long-range effects in optimizing the geometry of stereoregular polymers. I. Formalism. Journal of Chemical Physics, 1999, 111, 5306-5323.	3.0	32
219	Theoretical Study of the Tautomerism in the One-Electron Oxidized Guanineâ^'Cytosine Base Pair. Journal of Physical Chemistry B, 2010, 114, 13439-13445.	2.6	32
220	DNA spontaneous mutation and its role in the evolution of GC-content: assessing the impact of the genetic sequence. Physical Chemistry Chemical Physics, 2015, 17, 7754-7760.	2.8	32
221	Mechanism of Fluorescence Switching in One ESIPT-Based Al ³⁺ Probe. Journal of Physical Chemistry B, 2016, 120, 6730-6738.	2.6	32
222	Catalyst-Controlled Regiodivergent C–H Arylation Site of Fluorinated 2-Arylpyridine Derivatives: Application to Luminescent Iridium(III) Complexes. ACS Catalysis, 2019, 9, 1320-1328.	11.2	32
223	First hyperpolarizability of H–(BN)N–H oligomers: analysis of geometry, asymmetry and delocalization effectsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b108044j/. Physical Chemistry Chemical Physics, 2002, 4, 432-440.	2.8	31
224	Structures and Properties of Polyphosphinoborane:Â an Oligomeric Theoretical Study. Macromolecules, 2004, 37, 1009-1015.	4.8	31
225	The n→π* transition in nitroso compounds: A TD-DFT study. Chemical Physics Letters, 2006, 420, 529-533.	2.6	31
226	A theoretical study of the perfluoro-diarylethenes electronic spectra. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 211-223.	3.9	31
227	Photochromic molecular wires: Insights from theory. Chemical Physics Letters, 2010, 488, 193-197.	2.6	31
228	Do inverse dithienylethenes behave as normal ones? A joint spectroscopic and theoretical investigation. Physical Chemistry Chemical Physics, 2013, 15, 6226.	2.8	31
229	Ruthenium Sensitizer Functionalized by Acetylacetone Anchoring Groups for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 8652-8660.	3.1	31
230	Attochemistry: Is Controlling Electrons the Future of Photochemistry?. Journal of Physical Chemistry Letters, 2021, 12, 8404-8415.	4.6	31
231	Theoretical study of the longitudinal first hyperpolarizability of polysilaacetylene. Journal of Chemical Physics, 2004, 120, 10317-10327.	3.0	30
232	First Hyperpolarizability of Polyaminoborane and Polyiminoborane Oligomers. Journal of Physical Chemistry A, 2004, 108, 9260-9266.	2.5	30
233	Second-Order MÃ,llerâ^'Plesset Evaluation of the Bond Length Alternation of Several Series of Linear Oligomers. Journal of Physical Chemistry A, 2005, 109, 5734-5741.	2.5	30
234	The NBO pattern in luminescent chromophores: unravelling excited-state features using TD-DFT. Physical Chemistry Chemical Physics, 2013, 15, 7534.	2.8	30

#	Article	IF	CITATIONS
235	ESIPT or not ESIPT? Revisiting recent results on 2,1,3-benzothiadiazole under the TD-DFT light. RSC Advances, 2014, 4, 14189-14192.	3.6	30
236	Choosing an atomic basis set for TD-DFT, SOPPA, ADC(2), CIS(D), CC2 and EOM-CCSD calculations of low-lying excited states of organic dyes. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	30
237	2,5-Bis(azulenyl)pyrrolo[3,2-b]pyrroles – the key influence of the linkage position on the linear and nonlinear optical properties. Journal of Materials Chemistry C, 2017, 5, 2620-2628.	5.5	30
238	Fabrication of Robust Spatially Resolved Photochromic Patterns on Cellulose Papers by Covalent Printing for Anticounterfeiting Applications. ACS Applied Polymer Materials, 2019, 1, 1240-1250.	4.4	30
239	Solution and solid-state Excited-State Intramolecular Proton Transfer (ESIPT) emitters incorporating Bis-triethyl-or triphenylsilylethynyl units. Dyes and Pigments, 2019, 160, 915-922.	3.7	30
240	How To Make Nitroaromatic Compounds Glow: Nextâ€Generation Large Xâ€Shaped, Centrosymmetric Diketopyrrolopyrroles. Angewandte Chemie - International Edition, 2020, 59, 16104-16113.	13.8	30
241	Thermally Activated Delayed Fluorescence Emitters with Intramolecular Proton Transfer for High Luminance Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 15459-15474.	8.0	30
242	A theoretical investigation of the hydrated glycine cation energetics and structures. Chemical Physics Letters, 2007, 445, 57-61.	2.6	29
243	Ab initio studies of the λmax of naphthoquinones dyes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 1326-1333.	3.9	29
244	Revisiting the relationship between the bond length alternation and the first hyperpolarizability with rangeâ€separated hybrid functionals. Journal of Computational Chemistry, 2008, 29, 921-925.	3.3	29
245	Palladium-Catalyzed Direct Arylation of Luminescent Bis-Cyclometalated Iridium(III) Complexes Incorporating C^N- or O^O-Coordinating Thiophene-Based Ligands: an Efficient Method for Color Tuning. Inorganic Chemistry, 2013, 52, 12416-12428.	4.0	29
246	Excited-State Geometries of Solvated Molecules: Going Beyond the Linear-Response Polarizable Continuum Model. Journal of Chemical Theory and Computation, 2014, 10, 1848-1851.	5.3	29
247	Solvent Effects on Cyanine Derivatives: A PCM Investigation. Journal of Physical Chemistry A, 2014, 118, 5343-5348.	2.5	29
248	Absorption and fluorescence signatures of 1,2,3-triazole based regioisomers: challenging compounds for TD-DFT. Physical Chemistry Chemical Physics, 2014, 16, 9064-9073.	2.8	29
249	Computational Molecular Electronic Spectroscopy with TD-DFT. Topics in Current Chemistry, 2015, 368, 347-375.	4.0	29
250	Tuning the Direction of Intramolecular Charge Transfer and the Nature of the Fluorescent State in a T-Shaped Molecular Dyad. Journal of Physical Chemistry A, 2015, 119, 6283-6295.	2.5	29
251	Efficient Lightâ€Induced p <i>K</i> _a â€Modulation Coupled to Base atalyzed Photochromism. Angewandte Chemie - International Edition, 2018, 57, 4797-4801.	13.8	29
252	An extended excited-state intramolecular proton transfer (ESIPT) emitter for random lasing applications. Physical Chemistry Chemical Physics, 2018, 20, 19958-19963.	2.8	29

#	Article	IF	CITATIONS
253	Photoinduced Energy and Electron Transfer Between a Photoactive Cage Based on a Thermally Activate Delayed Fluorescence Ligand and Encapsulated Fluorescent Dyes. ACS Applied Energy Materials, 2018, 1, 2971-2978.	5.1	29
254	Intramolecular charge transfer and first-order hyperpolarizability of planar and twisted sesquifulvalenes. Physical Chemistry Chemical Physics, 2002, 4, 5566-5571.	2.8	28
255	Azacalixphyrin: The Hidden Porphyrin Cousin Brought to Light. Angewandte Chemie - International Edition, 2013, 52, 6250-6254.	13.8	28
256	Turning ESIPT-Based triazine fluorophores into dual emitters: From theory to experiment. Dyes and Pigments, 2019, 163, 475-482.	3.7	28
257	Merging polyacenes and cationic helicenes: from weak to intense chiroptical properties in the far red region. Chemical Science, 2020, 11, 1165-1169.	7.4	28
258	Mountaineering Strategy to Excited States: Highly Accurate Oscillator Strengths and Dipole Moments of Small Molecules. Journal of Chemical Theory and Computation, 2021, 17, 416-438.	5.3	28
259	Ab initio determination of the vibrational and electronic first hyperpolarizabilities of reference compounds for non-linear optical (NLO) applications 3-Methyl 4-nitropyridine 1-oxide (POM) and N-(4-nitrophenyl)-(L)-prolinol (NPP). Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1547-1553.	1.7	27
260	Structure and nonlinear electrical properties of squaric acid derivatives: a theoretical study of the conformation and deprotonation effects. Computational and Theoretical Chemistry, 2000, 528, 151-159.	1.5	27
261	Ab Initio Investigation of the Electronic Properties of Coupled Dithienylethenes. Journal of Physical Chemistry Letters, 2010, 1, 434-438.	4.6	27
262	Acetylacetone anchoring group for NiO-based dye-sensitized solar cell. Dyes and Pigments, 2014, 105, 174-179.	3.7	27
263	Pâ€Type Photochromism of New Helical Naphthopyrans: Synthesis and Photochemical, Photophysical and Theoretical Study. ChemPhysChem, 2015, 16, 2447-2458.	2.1	27
264	Molecular-structure control of electron transfer dynamics of push–pull porphyrins as sensitizers for NiO based dye sensitized solar cells. RSC Advances, 2016, 6, 77184-77194.	3.6	27
265	Synthesis and properties of new benzothiadiazole-based push-pull dyes for p-type dye sensitized solar cells. Dyes and Pigments, 2018, 148, 154-166.	3.7	27
266	<i>cis</i> → <i>trans</i> photoisomerisation of azobenzene: a fresh theoretical look. Physical Chemistry Chemical Physics, 2021, 23, 19155-19165.	2.8	27
267	Optimizing the geometry of stereoregular polymers. III. Polyyne and the basis set quasi-linear dependence. International Journal of Quantum Chemistry, 2000, 80, 863-870.	2.0	26
268	MP2 correlation effects upon the electronic and vibrational properties of polyyne. Journal of Chemical Physics, 2001, 114, 5917-5922.	3.0	26
269	An ab initio scheme for quantitative predictions of the visible spectra of diarylethenes. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 40-44.	3.9	26
270	Absorption spectra of recently synthesised organic dyes: A TDâ€ĐFT study. International Journal of Quantum Chemistry, 2010, 110, 2121-2129.	2.0	26

#	Article	IF	CITATIONS
271	Acebutolol and alprenolol metabolism predictions: comparative study of electrochemical and cytochrome P450-catalyzed reactions using liquid chromatography coupled to high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 6077-6085.	3.7	26
272	Optical Properties of Diarylethenes with TD-DFT: 0–0 Energies, Fluorescence, Stokes Shifts, and Vibronic Shapes. Journal of Chemical Theory and Computation, 2014, 10, 3944-3957.	5.3	26
273	Electroactive polymer–peptide conjugates for adhesive biointerfaces. Biomaterials Science, 2015, 3, 1395-1405.	5.4	26
274	Influence of the electron donor groups on the optical and electrochemical properties of borondifluoride complexes of curcuminoid derivatives: a joint theoretical and experimental study. RSC Advances, 2017, 7, 10132-10142.	3.6	26
275	Excited state gradients for a state-specific continuum solvation approach: The vertical excitation model within a Lagrangian TDDFT formulation. Journal of Chemical Physics, 2017, 146, 204106.	3.0	26
276	Unexpected Nucleophilic Substitution Reaction of BODIPY: Preparation of the BODIPY–TEMPO Triad Showing Radicalâ€Enhanced Intersystem Crossing. European Journal of Organic Chemistry, 2018, 2018, 885-895.	2.4	26
277	General Principles for the Design of Visibleâ€Lightâ€Responsive Photoswitches: Tetraâ€ <i>ortho</i> â€Chloroâ€Azobenzenes. Angewandte Chemie, 2020, 132, 21847-21854.	2.0	26
278	ls ADC(3) as Accurate as CC3 for Valence and Rydberg Transition Energies?. Journal of Physical Chemistry Letters, 2020, 11, 974-980.	4.6	26
279	Towards the understanding of the chromatic behaviour of triphenylmethane derivatives. Chemical Physics, 2007, 335, 177-186.	1.9	25
280	Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes. Journal of Molecular Graphics and Modelling, 2010, 28, 465-471.	2.4	25
281	Simulation of the Properties of a Photochromic Triad. Journal of Physical Chemistry Letters, 2010, 1, 2104-2108.	4.6	25
282	TD-DFT simulations of the electronic properties of star-shaped photochromes. Physical Chemistry Chemical Physics, 2010, 12, 7994.	2.8	25
283	A theoretical spectroscopy investigation of bifunctional platinum-bridged diarylethenes. Chemical Physics Letters, 2011, 502, 77-81.	2.6	25
284	A Methodological Evaluation of Volumetric Measurement Techniques including Three-Dimensional Imaging in Breast Surgery. BioMed Research International, 2014, 2014, 1-10.	1.9	25
285	Extendable nickel complex tapes that reach NIR absorptions. Chemical Communications, 2014, 50, 15140-15143.	4.1	25
286	Designing efficient photochromic dithienylethene dyads. Chemical Science, 2015, 6, 3495-3504.	7.4	25
287	Ethynylâ€Tolyl Extended 2â€(2′â€Hydroxyphenyl)benzoxazole Dyes: Solution and Solidâ€state Excitedâ€State Intramolecular Proton Transfer (ESIPT) Emitters. European Journal of Organic Chemistry, 2019, 2019, 1134-1144.	2.4	25
288	Dual fluorescence in strap ESIPT systems: a theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 854-863.	2.8	25

#	Article	IF	CITATIONS
289	Hybrid dithienylethene-naphthopyran multi-addressable photochromes: an ab initio analysis. Physical Chemistry Chemical Physics, 2010, 12, 13144.	2.8	24
290	Multiswitchable Acidichromic and Photochromic Bisdiarylethene. An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2011, 115, 23096-23106.	3.1	24
291	Investigation of ESIPT in a panel of chromophores presenting N–Hâ⊄N intramolecular hydrogen bonds. Physical Chemistry Chemical Physics, 2014, 16, 25288-25295.	2.8	24
292	NIR Emission in Borondifluoride Complexes of 2′-Hydroxychalcone Derivatives Containing an Acetonaphthone Ring. Journal of Physical Chemistry C, 2014, 118, 11906-11918.	3.1	24
293	Aggregation Effect on the Luminescence Properties of Phenylbipyridine Pt(II) Acetylide Complexes. A Theoretical Prediction with Experimental Evidence. Journal of Physical Chemistry A, 2014, 118, 6278-6286.	2.5	24
294	Chiral Nearâ€Infrared Fluorophores by Selfâ€Promoted Oxidative Coupling of Cationic Helicenes with Amines/Enamines. Angewandte Chemie - International Edition, 2021, 60, 8733-8738.	13.8	24
295	Analysis of the sign reversal of the second-order molecular polarizability in polymethineimine chains. Journal of Chemical Physics, 2001, 115, 6766-6774.	3.0	23
296	Theoretical Investigation of the Geometries and UVâ^'vis Spectra of Poly(<scp> </scp> -glutamic acid) Featuring a Photochromic Azobenzene Side Chain. Journal of Chemical Theory and Computation, 2008, 4, 637-645.	5.3	23
297	Communication: Bond length alternation of conjugated oligomers: Another step on the fifth rung of Perdew's ladder of functional. Journal of Chemical Physics, 2010, 133, 151104.	3.0	23
298	Intermolecular interactions in electron transfer through stretched helical peptides. Physical Chemistry Chemical Physics, 2012, 14, 10332.	2.8	23
299	Impact of DFT functionals on the predicted magnesium–DNA interaction: an ONIOM study. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	23
300	Solvatomagnetic Comparison Method: A Proper Quantification of Solvent Hydrogen-Bond Basicity. Journal of Physical Chemistry B, 2014, 118, 7594-7608.	2.6	23
301	Exploring the self-assembly and energy transfer of dynamic supramolecular iridium-porphyrin systems. Dalton Transactions, 2016, 45, 17195-17205.	3.3	23
302	Solvatochromic Shifts in UV–Vis Absorption Spectra: The Challenging Case of 4-Nitropyridine <i>N</i> -Oxide. Journal of Chemical Theory and Computation, 2016, 12, 1919-1929.	5.3	23
303	Bidirectional Solvatofluorochromism of a Pyrrolo[3,2- <i>b</i>]pyrrole–Diketopyrrolopyrrole Hybrid. Journal of Physical Chemistry C, 2018, 122, 13424-13434.	3.1	23
304	Pros and Cons of the Bethe–Salpeter Formalism for Ground-State Energies. Journal of Physical Chemistry Letters, 2020, 11, 3536-3545.	4.6	23
305	Comparison of theoretical approaches for computing the bond length alternation of polymethineimine. Chemical Physics, 2007, 332, 79-85.	1.9	22
306	Revisiting the nonlinear optical properties of polybutatriene and polydiacetylene with density functional theory. Chemical Physics Letters, 2008, 456, 101-104.	2.6	22

#	Article	IF	CITATIONS
307	Methodological keys for accurate simulations. Physical Chemistry Chemical Physics, 2013, 15, 11875.	2.8	22
308	Synthesis and Photophysical Properties of Novel Donor–Acceptor <i>N</i> -(Pyridin-2-yl)-Substituted Benzo(thio)amides and Their Difluoroboranyl Derivatives. Journal of Physical Chemistry A, 2016, 120, 4116-4123.	2,5	22
309	Influence of the Nature of the Amino Group in Highly Fluorescent Difluoroborates Exhibiting Intramolecular Charge Transfer. Journal of Organic Chemistry, 2018, 83, 7779-7788.	3.2	22
310	Versatile synthesis of α-fused BODIPY displaying intense absorption in the NIR region and high electron affinity. Journal of Materials Chemistry C, 2018, 6, 9925-9931.	5.5	22
311	A theoretical elucidation of the mechanism of tuneable fluorescence in a full-colour emissive ESIPT dye. Physical Chemistry Chemical Physics, 2019, 21, 17400-17409.	2.8	22
312	Fe(<scp>iii</scp>)-Catalyzed synthesis of pyrrolo[3,2- <i>b</i>]pyrroles: formation of new dyes and photophysical studies. Organic Chemistry Frontiers, 2019, 6, 2939-2948.	4.5	22
313	Thiodiketopiperazines with two spirocyclic centers extracted from Botryosphaeria mamane, an endophytic fungus isolated from Bixa orellana L Phytochemistry, 2019, 158, 142-148.	2.9	22
314	Electronic first hyperpolarizability of polymethineimine chains with donor and acceptor groups. Synthetic Metals, 1996, 80, 205-210.	3.9	21
315	On the basis set convergence of TD-DFT oscillator strengths: Dinitrophenylhydrazones as a case study. Computational and Theoretical Chemistry, 2007, 804, 31-34.	1.5	21
316	Modeling the Microhydration of Protonated Alanine. Journal of Physical Chemistry B, 2008, 112, 9896-9902.	2.6	21
317	Influence of Mg ²⁺ on the Guanine–Cytosine Tautomeric Equilibrium: Simulations of the Induced Intermolecular Proton Transfer. ChemPhysChem, 2011, 12, 2615-2623.	2.1	21
318	3-Fluoro- and 3,3-Difluoro-3,4-dideoxy-KRN7000 Analogues as New Potent Immunostimulator Agents: Total Synthesis and Biological Evaluation in Human Invariant Natural Killer T Cells and Mice. Journal of Medicinal Chemistry, 2012, 55, 1227-1241.	6.4	21
319	The first structural and spectroscopic characterisation of a ring-opened form of a 2H-naphtho[1,2-b]pyran: a novel photomerocyanine. Chemical Communications, 2014, 50, 7900.	4.1	21
320	Synthesis of NIR naphthyl-containing aza-BODIPYs and measure ofÂthe singlet oxygen generation. Tetrahedron, 2015, 71, 7676-7680.	1.9	21
321	Bethe-Salpeter study of cationic dyes: Comparisons with ADC(2) and TD-DFT. Journal of Chemical Physics, 2017, 146, 034301.	3.0	21
322	Calculations of <i>n</i> →i€* Transition Energies: Comparisons Between TD-DFT, ADC, CC, CASPT2, and BSE/ <i>GW</i> Descriptions. Journal of Physical Chemistry A, 2017, 121, 6122-6134.	2.5	21
323	Combined TD-DFT-SOS-CIS(D) Study of BOPHY Derivatives with Potential Application in Biosensing. Journal of Physical Chemistry B, 2017, 121, 10850-10858.	2.6	21
324	Comparative studies of new pyranylidene-based sensitizers bearing single or double anchoring groups for dye-sensitized solar cells. Solar Energy, 2020, 205, 310-319.	6.1	21

#	Article	IF	CITATIONS
325	High-field and benchtop NMR spectroscopy for the characterization of new psychoactive substances. Forensic Science International, 2021, 321, 110718.	2.2	21
326	Does Twisted π-Conjugation Framework Always Induce Efficient Intersystem Crossing? A Case Study with Benzo[<i>b</i>]- and [<i>a</i>]Phenanthrene-Fused BODIPY Derivatives and Identification of a Dark State. Journal of Physical Chemistry B, 2021, 125, 6280-6295.	2.6	21
327	Going beyond the borders: pyrrolo[3,2- <i>b</i>]pyrroles with deep red emission. Chemical Science, 2021, 12, 15935-15946.	7.4	21
328	Static first hyperpolarizability of small all-trans polymethincimine oligomers. Basis set and electron correlation effects. Computational and Theoretical Chemistry, 1998, 425, 69-79.	1.5	20
329	Long-range effects in optimizing the geometry of stereoregular polymers. II. Hydrogen fluoride chains as a working example. Journal of Chemical Physics, 1999, 111, 5324-5330.	3.0	20
330	Ab initio investigation of the hydration of deprotonated amino acids. Journal of the American Society for Mass Spectrometry, 2009, 20, 632-638.	2.8	20
331	New Insights on the Molecular Recognition of Imidacloprid with Aplysia californica AChBP: A Computational Study. Journal of Physical Chemistry B, 2013, 117, 3944-3953.	2.6	20
332	Solution―and Solidâ€State Luminescent Borate Complexes Based on a Substituted Ï€â€Conjugated 2â€(6′â€Hydroxyâ€5′â€benzofuryl) Scaffold. European Journal of Organic Chemistry, 2014, 2014, 7156-71	64: ⁴	20
333	Determining the most promising anchors for CuSCN: ab initio insights towards p-type DSSCs. Journal of Materials Chemistry A, 2016, 4, 2217-2227.	10.3	20
334	Mono- and Diplatinum Polyynediyl Complexes as Potential Push–Pull Chromophores: Synthesis, Characterization, TD-DFT Modeling, and Photophysical and NLO Properties. Organometallics, 2018, 37, 2232-2244.	2.3	20
335	Synthesis of Bis(arylethynyl)pyrrolo[3,2â€ <i>b</i>]pyrroles and Effect of Intramolecular Charge Transfer on Their Photophysical Behavior. Chemistry - A European Journal, 2019, 25, 598-608.	3.3	20
336	Persistent Organic Room-Temperature Phosphorescence in Cyclohexane- <i>trans</i> -1,2-Bisphthalimide Derivatives: The Dramatic Impact of Heterochiral vs Homochiral interactions. Journal of Physical Chemistry Letters, 2020, 11, 6426-6434.	4.6	20
337	Ground―and Excited‣tate Symmetry Breaking and Solvatofluorochromism in Centrosymmetric Pyrrolo[3,2â€ <i>b</i>]pyrroles Possessing two Nitro Groups. ChemPhotoChem, 2020, 4, 508-519.	3.0	20
338	<title>Model calculations of the first hyperpolarisability per unit cell of finite and infinite polymethineimine chains</title> . , 1995, , .		19
339	Ab Initio Investigation of the Structures and Properties of Polyaminoborane. Journal of Physical Chemistry A, 2004, 108, 9616-9624.	2.5	19
340	Assessment of PBEO for evaluating the absorption spectra of carbonyl molecules. International Journal of Quantum Chemistry, 2006, 106, 1853-1859.	2.0	19
341	Visible spectrum of naphthazarin investigated through Time-Dependent Density Functional Theory. Chemical Physics Letters, 2010, 493, 67-71.	2.6	19
342	Diarylethene–dihydroazulene multimode photochrome: a theoretical spectroscopic investigation. Physical Chemistry Chemical Physics, 2011, 13, 13791.	2.8	19

#	Article	IF	CITATIONS
343	Performances of recently-proposed functionals for describing disulfide radical anions and similar systems. Chemical Physics Letters, 2011, 501, 245-251.	2.6	19
344	TD-DFT study of the for coumarins. Chemical Physics Letters, 2013, 583, 218-221.	2.6	19
345	Spectral signatures of thieno[3,4-b]pyrazines: Theoretical interpretations and design of improved structures. Dyes and Pigments, 2013, 99, 972-978.	3.7	19
346	Writing and erasing hidden optical information on covalently modified cellulose paper. Chemical Communications, 2016, 52, 7672-7675.	4.1	19
347	Singlet oxygen generation properties of isometrically dibromated thienyl-containing aza-BODIPYs. Physical Chemistry Chemical Physics, 2016, 18, 32686-32690.	2.8	19
348	Nâ€Substituted Azacalixphyrins: Synthesis, Properties, and Selfâ€Assembly. Chemistry - A European Journal, 2016, 22, 17820-17832.	3.3	19
349	Assessment of the convergence of partially self-consistent BSE/GW calculations. Molecular Physics, 2016, 114, 957-967.	1.7	19
350	Modeling the Photochrome–TiO ₂ Interface with Bethe–Salpeter and Time-Dependent Density Functional Theory Methods. Journal of Physical Chemistry Letters, 2017, 8, 936-940.	4.6	19
351	Investigating the optical properties of BOIMPY dyes using ab initio tools. Physical Chemistry Chemical Physics, 2017, 19, 10554-10561.	2.8	19
352	Synthesis and Characterization of Ruffled Phosphorus <i>meso</i> â€Ester Corroles. European Journal of Inorganic Chemistry, 2017, 2017, 780-788.	2.0	19
353	An investigation on the second-order nonlinear optical response of cationic bipyridine or phenanthroline iridium(<scp>iii</scp>) complexes bearing cyclometallated 2-phenylpyridines with a triphenylamine substituent. Dalton Transactions, 2018, 47, 8292-8300.	3.3	19
354	A luminescent [Pd ₄ Ru ₈] ²⁴⁺ supramolecular cage. Chemical Communications, 2018, 54, 6016-6019.	4.1	19
355	Highly Cooperative Photoswitching in Dihydropyrene Dimers. Angewandte Chemie - International Edition, 2020, 59, 19352-19358.	13.8	19
356	Theoretical Study of Dehydrogenation Effects upon the First Hyperpolarizability of Polyphosphinoborane. Journal of Physical Chemistry A, 2004, 108, 500-506.	2.5	18
357	Ground Electronic State of Peptide Cation Radicals: A Delocalized Unpaired Electron?. Journal of Physical Chemistry Letters, 2011, 2, 1426-1431.	4.6	18
358	Excited-State Vibrations of Solvated Molecules: Going Beyond the Linear-Response Polarizable Continuum Model. Journal of Chemical Theory and Computation, 2015, 11, 847-850.	5.3	18
359	Coumarinâ€Phosphineâ€Based Smart Probes for Tracking Biologically Relevant Metal Complexes: From Theoretical to Biological Investigations. European Journal of Inorganic Chemistry, 2016, 2016, 545-553.	2.0	18
360	Investigating the properties of PODIPYs (phosphorus-dipyrromethene) with ab initio tools. Physical Chemistry Chemical Physics, 2016, 18, 9358-9366.	2.8	18

#	Article	IF	CITATIONS
361	An Unprecedented Family of Luminescent Iridium(III) Complexes Bearing a Six-Membered Chelated Tridentate C^N^C Ligand. Inorganic Chemistry, 2017, 56, 5182-5188.	4.0	18
362	Structural and Optical Properties of Subporphyrinoids: A TD-DFT Study. Journal of Physical Chemistry A, 2017, 121, 4306-4317.	2.5	18
363	Exploring the Solvatochromism of Betaineâ€30 with Ab Initio Tools: From Accurate Gasâ€Phase Calculations to Implicit and Explicit Solvation Models. Chemistry - A European Journal, 2017, 23, 4108-4119.	3.3	18
364	Quantifying the Performances of DFT for Predicting Vibrationally Resolved Optical Spectra: Asymmetric Fluoroborate Dyes as Working Examples. Journal of Chemical Theory and Computation, 2017, 13, 4347-4356.	5.3	18
365	Synthesis, structure and photophysical properties of NIR aza-BODIPYs with F/ N 3 / NH 2 groups at 1,7-positions. Dyes and Pigments, 2017, 136, 619-626.	3.7	18
366	Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo. Results in Chemistry, 2019, 1, 100002.	2.0	18
367	"Iridium effect―in cyclometalated iridium complexes for p-type dye sensitized solar cells. Dyes and Pigments, 2019, 171, 107693.	3.7	18
368	Analyzing the Relation between Structure and Aggregation Induced Emission (AIE) Properties of Iridium(III) Complexes through Modification of Non hromophoric Ancillary Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 152-163.	2.0	18
369	Ab initio band structure of polymethineimine isomers. Journal of Chemical Physics, 1998, 108, 1023-1030.	3.0	17
370	Fluorescein isothiocyanate: Molecular characterization by theoretical calculations. Chemical Physics, 2008, 354, 155-161.	1.9	17
371	On the Absorption Spectra of Recently Synthesized Carbonyl Dyes: TD-DFT Insights. Journal of Physical Chemistry A, 2010, 114, 9579-9582.	2.5	17
372	A DFT-D evaluation of the complexation of a molecular tweezer with small aromatic molecules. Chemical Physics Letters, 2012, 522, 11-16.	2.6	17
373	Voltammetry coupled to mass spectrometry in the presence of isotope 18O labeled water for the prediction of oxidative transformation pathways of activated aromatic ethers: Acebutolol. Analytica Chimica Acta, 2013, 762, 39-46.	5.4	17
374	Minor Pyranonaphthoquinones from the Apothecia of the Lichen <i>Ophioparma ventosa</i> . Journal of Natural Products, 2016, 79, 1005-1011.	3.0	17
375	Synthesis and properties of novel pyranylidene-based organic sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2019, 171, 107747.	3.7	17
376	Copolymerization Effects upon the Second-Order NLO Responses of Polyacetylene/Polymethineimine. Macromolecules, 2003, 36, 3980-3985.	4.8	16
377	Comparison of Microhydration Methods: Protonated Glycine as a Working Example. Journal of Physical Chemistry B, 2011, 115, 3604-3613.	2.6	16
378	Charge-transfer in quasilinear push–pull polyene chains. Chemical Physics Letters, 2013, 581, 52-56.	2.6	16

#	Article	IF	CITATIONS
379	N-confused porphyrin tautomers: lessons from density functional theory. Physical Chemistry Chemical Physics, 2015, 17, 5290-5297.	2.8	16
380	Contrasted photochromic and luminescent properties in dinuclear Pt(<scp>ii</scp>) complexes linked through a central dithienylethene unit. Chemical Communications, 2016, 52, 9833-9836.	4.1	16
381	Modeling excitation energy transfer in multi-BODIPY architectures. Physical Chemistry Chemical Physics, 2017, 19, 6443-6453.	2.8	16
382	Phosphorescent platinum(ii) complexes bearing pentafluorosulfanyl substituted cyclometalating ligands. RSC Advances, 2017, 7, 25566-25574.	3.6	16
383	Multiâ€Stage Redox Systems Based on Dicationic Pâ€Containing Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2020, 26, 8226-8229.	3.3	16
384	Benzothiadiazoleâ€Substituted Azaâ€BODIPY Dyes: Twoâ€Photon Absorption Enhancement for Improved Optical Limiting Performances in the Shortâ€Wave IR Range. Chemistry - A European Journal, 2021, 27, 3517-3525.	3.3	16
385	Photoluminescent properties of the carbon-dimer defect in hexagonal boron-nitride: A many-body finite-size cluster approach. Physical Review Materials, 2021, 5, .	2.4	16
386	A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Bicyclic Systems. Journal of Physical Chemistry A, 2021, 125, 10174-10188.	2.5	16
387	Interplay between hydroxyl radical attack and H-bond stability in guanine–cytosine. RSC Advances, 2012, 2, 11867.	3.6	15
388	Fluorescent carboxylic and phosphonic acids: comparative photophysics from solution to organic nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 12748.	2.8	15
389	Interplay between solvent models and predicted optical spectra: A TD-DFT study of 7-OH-coumarin. Chemical Physics Letters, 2013, 556, 122-126.	2.6	15
390	Modelling solvent effects on the absorption and emission spectra of constrained cyanines with both implicit and explicit QM/EFP models. Computational and Theoretical Chemistry, 2014, 1040-1041, 321-327.	2.5	15
391	Interplay between TiO ₂ Surfaces and Organic Photochromes: A DFT Study of Adsorbed Azobenzenes and Diarylethenes. Journal of Physical Chemistry C, 2015, 119, 3684-3696.	3.1	15
392	An ab initio investigation of photoswitches adsorbed onto metal oxide surfaces: the case of donor–acceptor Stenhouse adduct photochromes on TiO ₂ anatase. Journal of Materials Chemistry C, 2017, 5, 1624-1631.	5.5	15
393	Exploring the excited-states of squaraine dyes with TD-DFT, SOS-CIS(D) and ADC(2). Dyes and Pigments, 2017, 138, 169-175.	3.7	15
394	Excited state intramolecular proton transfer in julolidine derivatives: an <i>ab initio</i> study. Physical Chemistry Chemical Physics, 2018, 20, 25031-25038.	2.8	15
395	Controlling the canonical/zwitterionic balance through intramolecular proton transfer: a strategy for vapochromism. Materials Chemistry Frontiers, 2018, 2, 1618-1625.	5.9	15
396	High-Performance Optical Power Limiting Filters at Telecommunication Wavelengths: When Aza-BODIPY Dyes Bond to Sol–Gel Materials. Journal of Physical Chemistry C, 2020, 124, 24344-24350.	3.1	15

#	Article	IF	CITATIONS
397	Electronic and vibrational first hyperpolarizabilities of polymethineimine oligomers. Computational and Theoretical Chemistry, 2000, 529, 65-71.	1.5	14
398	Analyticab initiodetermination of the IR intensities in stereoregular polymers. Journal of Chemical Physics, 2003, 118, 3956-3965.	3.0	14
399	Linear phosphorus-boron chains: model system with huge electronic first hyperpolarizability. International Journal of Quantum Chemistry, 2005, 103, 226-234.	2.0	14
400	Stepwise Hydration of Protonated Proline. Journal of Physical Chemistry B, 2008, 112, 7702-7705.	2.6	14
401	A theoretical spectroscopy investigation of oxosumanenes. Chemical Physics Letters, 2012, 519-520, 49-53.	2.6	14
402	Excited-state nature in benzodifuranone dyes: Insights from ab initio simulations. Dyes and Pigments, 2012, 92, 1144-1152.	3.7	14
403	Exceptional Stability of Azacalixphyrin and Its Dianion. Journal of Physical Chemistry A, 2014, 118, 8883-8888.	2.5	14
404	Vibronic spectra of organic electronic chromophores. RSC Advances, 2014, 4, 55466-55472.	3.6	14
405	Searching for new borondifluoride Î ² -diketonate complexes with enhanced absorption/emission properties using ab initio tools. Dyes and Pigments, 2018, 155, 59-67.	3.7	14
406	A panchromatic, near infrared Ir(III) emitter bearing a tripodal C^N^C ligand as a dye for dye-sensitized solar cells. Polyhedron, 2018, 140, 109-115.	2.2	14
407	Azacalixphyrins as NIR photoacoustic contrast agents. Chemical Communications, 2018, 54, 12365-12368.	4.1	14
408	Azacalixquinarenes: From Canonical to (Poly-)Zwitterionic Macrocycles. Journal of Organic Chemistry, 2019, 84, 1387-1397.	3.2	14
409	Controlling Two-Photon Action Cross Section by Changing a Single Heteroatom Position in Fluorescent Dyes. Journal of Physical Chemistry Letters, 2020, 11, 5920-5925.	4.6	14
410	Photostable orange-red fluorescent unsymmetrical diketopyrrolopyrrole–BF ₂ hybrids. Journal of Materials Chemistry C, 2020, 8, 7708-7717.	5.5	14
411	Helical donor–acceptor platinum complexes displaying dual luminescence and near-infrared circularly polarized luminescence. Dalton Transactions, 2021, 50, 13220-13226.	3.3	14
412	How accurate are EOM-CC4 vertical excitation energies?. Journal of Chemical Physics, 2021, 154, 221103.	3.0	14
413	Accurate full configuration interaction correlation energy estimates for five- and six-membered rings. Journal of Chemical Physics, 2021, 155, 134104.	3.0	14
414	Exploratory Pariser-Parr-Pople investigation of the static first hyperpolarizability of polymethineimine chains. Chemical Physics, 1996, 213, 217-228.	1.9	13

#	Article	IF	CITATIONS
415	Comment on "Calculation of ab initio dynamic hyperpolarizabilities of polymers―[J. Chem. Phys. 110, 2717 (1999)]. Journal of Chemical Physics, 2000, 112, 1616-1617.	3.0	13
416	Ab Initio Assessment of the First Hyperpolarizability of Saturated and Unsaturated Polyaminoborane/Polyphosphinoborane Copolymers. Journal of Physical Chemistry A, 2005, 109, 6380-6386.	2.5	13
417	Hemi-indigo photochroms: A theoretical investigation. Chemical Physics Letters, 2007, 436, 84-88.	2.6	13
418	A UV/VIS spectra investigation of pHâ€sensitive dyes using timeâ€dependent density functional theory. International Journal of Quantum Chemistry, 2010, 110, 2147-2154.	2.0	13
419	A DFT study of magnetic interactions in photoswitchable systems. Chemical Physics Letters, 2012, 542, 13-18.	2.6	13
420	Spectral Signatures of Perylene Diimide Derivatives: Insights From Theory. Journal of Physical Chemistry C, 2013, 117, 21682-21691.	3.1	13
421	Full cLR-PCM calculations of the solvatochromic effects on emission energies. Physical Chemistry Chemical Physics, 2014, 16, 26024-26029.	2.8	13
422	Excited States of Ladder-Type π-Conjugated Dyes with a Joint SOS-CIS(D) and PCM-TD-DFT Approach. Journal of Physical Chemistry A, 2015, 119, 5417-5425.	2.5	13
423	The voltage-sensitive dye RH421 detects a Na+,K+-ATPase conformational change at the membrane surface. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 813-823.	2.6	13
424	Effiziente lichtinduzierte pKa-Modulation, gekoppelt mit basenkatalysierter Photochromie. Angewandte Chemie, 2018, 130, 4888-4893.	2.0	13
425	Intriguing C–H⋯Cu interactions in bis-(phenanthroline)Cu(<scp>i</scp>) redox mediators for dye-sensitized solar cells. Dalton Transactions, 2018, 47, 1018-1022.	3.3	13
426	Excited States of Xanthophylls Revisited: Toward the Simulation of Biologically Relevant Systems. Journal of Physical Chemistry Letters, 2021, 12, 6604-6612.	4.6	13
427	Analytic ab initio determination of the elastic modulus in stereoregular polymers: Analytical integral derivatives, long-range effects, implementation, and examples. Journal of Chemical Physics, 2003, 118, 373-388.	3.0	12
428	Ab initio prediction of extremely large first hyperpolarizability of polyphosphaacetylene and polyphosphasilyne. Chemical Physics Letters, 2005, 416, 277-281.	2.6	12
429	NLO response of polymethineimine and polymethineimine/polyacetylene conformers: Assessment of electron correlation effects. International Journal of Quantum Chemistry, 2005, 105, 553-563.	2.0	12
430	A TD-DFT investigation of UV spectra of pyranoÃ ⁻ dic dyes: A NCM vs PCM comparison. Computational and Theoretical Chemistry, 2007, 808, 85-91.	1.5	12
431	A TD-DFT investigation of the visible spectra of fluoro-anthraquinones. Dyes and Pigments, 2007, 72, 185-191.	3.7	12
432	Electrochemical Synthesis and Characterisation of Alternating Tripyridyl–Dipyrrole Molecular Strands with Multiple Nitrogenâ€Based Donor–Acceptor Binding Sites. Chemistry - A European Journal, 2010, 16, 11876-11889.	3.3	12

#	Article	IF	CITATIONS
433	Full ring closing in a diarylethene hexamer: insights from theory. Chemical Communications, 2013, 49, 4247-4249.	4.1	12
434	The photochemistry of inverse dithienylethene switches understood. Physical Chemistry Chemical Physics, 2014, 16, 26762-26768.	2.8	12
435	Unveiling Solvents Effect on Excited-State Polarizabilities with the Corrected Linear-Response Model. Journal of Physical Chemistry A, 2014, 118, 5652-5656.	2.5	12
436	Direct and Indirect Effects of Dispersion Interactions on the Electric Properties of Weakly Bound Complexes. Journal of Physical Chemistry A, 2015, 119, 3112-3124.	2.5	12
437	Parameterization of the ReaxFF reactive force field for a proline-catalyzed aldol reaction. Journal of Computational Chemistry, 2016, 37, 2564-2572.	3.3	12
438	Time-Dependent Density Functional Theory: A Tool to Explore Excited States. , 2017, , 927-961.		12
439	Thermal equilibration between excited states or solvent effects: unveiling the origins of anomalous emissions in heteroleptic Ru(<scp>ii</scp>) complexes. Physical Chemistry Chemical Physics, 2018, 20, 11559-11563.	2.8	12
440	Modelling excitation energy transfer in covalently linked molecular dyads containing a BODIPY unit and a macrocycle. Physical Chemistry Chemical Physics, 2018, 20, 1993-2008.	2.8	12
441	Performances of Density Functional Tight-Binding Methods for Describing Ground and Excited State Geometries of Organic Molecules. Journal of Chemical Theory and Computation, 2019, 15, 6267-6276.	5.3	12
442	Electronic Communication in Pyrrolo[3,2â€ <i>b</i>]pyrroles Possessing Sterically Hindered Aromatic Substituents. European Journal of Organic Chemistry, 2019, 2019, 5247-5253.	2.4	12
443	A Pd ₃ L ₆ supramolecular cage incorporating photoactive [2.2]paracyclophane units. Inorganic Chemistry Frontiers, 2020, 7, 232-238.	6.0	12
444	Nâ€Arylation of Diketopyrrolopyrroles with Aryl Triflates. Chemistry - an Asian Journal, 2020, 15, 1369-1375.	3.3	12
445	Electrochemical Ring-Opening and -Closing of a Spiropyran. Journal of Physical Chemistry A, 2021, 125, 3355-3361.	2.5	12
446	Dualâ€State Emissive Ï€â€Extended Salicylaldehyde Fluorophores: Synthesis, Photophysical Properties and Firstâ€Principle Calculations. European Journal of Organic Chemistry, 2021, 2021, 3726-3736.	2.4	12
447	Versatile naphthalimide tetrazines for fluorogenic bioorthogonal labelling. RSC Chemical Biology, 2021, 2, 1491-1498.	4.1	12
448	Controlling the emission in flexibly-linked (N^C^N)platinum dyads. Dalton Transactions, 2018, 47, 224-232.	3.3	12
449	Blue-Emitting 2-(2′-Hydroxyphenyl)benzazole Fluorophores by Modulation of Excited-State Intramolecular Proton Transfer: Spectroscopic Studies and Theoretical Calculations. Journal of Physical Chemistry B, 2022, 126, 2108-2118.	2.6	12
450	A Mountaineering Strategy to Excited States: Revising Reference Values with EOM-CC4. Journal of Chemical Theory and Computation, 2022, 18, 4418-4427.	5.3	12

#	Article	IF	CITATIONS
451	Molecular orbital expressions for approximate uncoupled Hartree-Fock second hyperpolarizabilities. A Pariser-Parr-Pople assessment for model polyacetylene chains. Chemical Physics, 1995, 197, 107-127.	1.9	11
452	Linear and Nonlinear Optics Properties of Polyphosphazene/Polynitrile Alternating Copolymers. Journal of Chemical Theory and Computation, 2005, 1, 307-314.	5.3	11
453	A quantitative prediction of the electronic spectra of thiocarbonyl chromophores: TD-DFT versus SAC-CI. Theoretical Chemistry Accounts, 2008, 119, 463-468.	1.4	11
454	An ab initio simulation of the UV/visible spectra of <i>N</i> â€benzylideneaniline dyes. International Journal of Quantum Chemistry, 2009, 109, 3506-3515.	2.0	11
455	Nature of the excited states in large photochromic dimers: A TD-DFT examination. Chemical Physics Letters, 2011, 509, 129-133.	2.6	11
456	On the photochromic properties of dithienylethenes grafted on gold clusters. Computational and Theoretical Chemistry, 2012, 990, 167-176.	2.5	11
457	Perfluorocyclohexene bridges in inverse DiArylEthenes: synthesis through Pd-catalysed C–H bond activation, experimental and theoretical studies on their photoreactivity. Chemical Communications, 2013, 49, 7896.	4.1	11
458	Competitive direct vs. indirect photochromism dynamics of constrained inverse dithienylethene molecules. Physical Chemistry Chemical Physics, 2014, 16, 22262-22272.	2.8	11
459	Benzothiophene or Benzofuran Bridges in Diaryl Ethenes: Twoâ€Step Access by Pdâ€Catalyzed CH Activation and Theoretical/Experimental Studies on Their Photoreactivity. Chemistry - A European Journal, 2014, 20, 10073-10083.	3.3	11
460	Spectroscopic and electrochemical properties of ruthenium complexes with photochromic triarylamine–dithienylethene–acetylide ligands. Inorganic Chemistry Frontiers, 2016, 3, 1432-1443.	6.0	11
461	Is energy transfer limiting multiphotochromism? answers from ab initio quantifications. Physical Chemistry Chemical Physics, 2017, 19, 2044-2052.	2.8	11
462	Ultrafast Excited-State Dynamics in Cyclometalated Ir(III) Complexes Coordinated with Perylenebisimide and Its I€-Radical Anion Ligands. Journal of Physical Chemistry C, 2017, 121, 21184-21198.	3.1	11
463	3,4-Dideoxy-3,3,4,4-tetrafluoro- and 4-OH epimeric 3-deoxy-3,3-difluoro-α-GalCer analogues: Synthesis and biological evaluation on human iNKT cells stimulation. European Journal of Medicinal Chemistry, 2019, 178, 195-213.	5.5	11
464	Reference Energies for Cyclobutadiene: Automerization and Excited States. Journal of Physical Chemistry A, 2022, 126, 4664-4679.	2.5	11
465	Integral algorithm and density matrix integration scheme forab initioband structure calculations on polymeric systems. Journal of Computational Chemistry, 2002, 23, 1430-1444.	3.3	10
466	Pseudo linear-dependence and long-range interaction effects on the polarizability and hyperpolarizabilities of stereoregular polymers. Chemical Physics Letters, 2003, 373, 539-549.	2.6	10
467	An ab initio simulation of a dithienylethene/phenoxynaphthacenequinone photochromic hybrid. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 218, 33-40.	3.9	10
468	Superior Performance of Range-Separated Hybrid Functionals for Describing σ* ↕σ UV–Vis Signatures of Three-Electron Two-Center Anions. Journal of Physical Chemistry A, 2012, 116, 3237-3246.	2.5	10

#	Article	IF	CITATIONS
469	The Remarkable Hyperchromicity of Ketohydrazone Dyes and Pigment Lakes Derived from 4â€Morpholinoâ€2â€naphthol. European Journal of Organic Chemistry, 2013, 2013, 8097-8107.	2.4	10
470	Optical signatures of borico dyes: a TD-DFT analysis. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	10
471	Theoretical spectroscopy of BASHY dyes. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	10
472	Asymmetrical 1,3-Bis(heteroazolyl)benzene Platinum Complexes with Tunable Second-Order Non-Linear Optical Properties. European Journal of Inorganic Chemistry, 2016, 2016, 4774-4782.	2.0	10
473	Accidental degeneracy in the spiropyran radical cation: charge transfer between two orthogonal rings inducing ultra-efficient reactivity. Physical Chemistry Chemical Physics, 2016, 18, 31244-31253.	2.8	10
474	Understanding the tautomerism in azacalixphyrins. Physical Chemistry Chemical Physics, 2016, 18, 9608-9615.	2.8	10
475	Optical properties of V-shaped bis-coumarins: Ab initio insights. Computational and Theoretical Chemistry, 2016, 1076, 57-64.	2.5	10
476	Phosphorescent cationic iridium(iii) complexes bearing a nonconjugated six-membered chelating ancillary ligand: a strategy for tuning the emission towards the blue. Dalton Transactions, 2018, 47, 10569-10577.	3.3	10
477	Fused bis-azacalixphyrin that reaches NIR-II absorptions. Chemical Communications, 2020, 56, 896-899.	4.1	10
478	TD-DFT and CC2 insights into the dual-emissive behaviour of 2-(2′-hydroxyphenyl)oxazoles core and their derivatives. Physical Chemistry Chemical Physics, 2020, 22, 25066-25074.	2.8	10
479	Synthesis of Nitroâ€Aryl Functionalised 4â€Aminoâ€1,8â€Naphthalimides and Their Evaluation as Fluorescent Hypoxia Sensors. Chemistry - A European Journal, 2020, 26, 10064-10071.	3.3	10
480	Tuning the Emission Color of Indolo[3,2â€ <i>b</i>]carbazoleâ€Based Boron Complexes and their Application in Organic Field Effect Transistors and Bioimaging. ChemPhotoChem, 2020, 4, 729-741.	3.0	10
481	Chiral Nearâ€Infrared Fluorophores by Selfâ€Promoted Oxidative Coupling of Cationic Helicenes with Amines/Enamines. Angewandte Chemie, 2021, 133, 8815-8820.	2.0	10
482	BN-Substituted coronene diimide donor–acceptor–donor triads: photophysical, (spectro)-electrochemical studies and Lewis behavior. Journal of Materials Chemistry C, 2021, 9, 13926-13934.	5.5	10
483	Convergence of exchange lattice summations in direct-space polymer calculations. International Journal of Quantum Chemistry, 2002, 89, 452-463.	2.0	9
484	Ab initio quantum chemical and ReaxFF-based study of the intramolecular iminium $\hat{a} \in \hat{a}$ (enamine conversion in a proline-catalyzed reaction. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	9
485	Tuning the NLO properties of polymethineimine chains by chemical substitution. Chemical Physics, 2013, 415, 196-206.	1.9	9
486	Quantum mechanical investigations on the role of neutral and negatively charged enamine intermediates in organocatalyzed reactions. Chemical Physics, 2014, 434, 30-36.	1.9	9

#	Article	IF	CITATIONS
487	How Metals Can Help Multiphotochromism: An Ab Initio Study. Journal of Physical Chemistry C, 2016, 120, 11140-11150.	3.1	9
488	Synthesis and Photophysical Properties of <i>N</i> â€Arylated Diketopyrrolopyrroles. European Journal of Organic Chemistry, 2018, 2018, 6643-6648.	2.4	9
489	Iron(<scp>iii</scp>) coordination properties of ladanein, a flavone lead with a broad-spectrum antiviral activity. New Journal of Chemistry, 2018, 42, 8074-8087.	2.8	9
490	The impact of the heteroatom in a five-membered ring on the photophysical properties of difluoroborates. Dyes and Pigments, 2019, 170, 107481.	3.7	9
491	Access to Chiral Rigid Hemicyanine Fluorophores from Tröger Bases and α-Imino Carbenes. Organic Letters, 2020, 22, 7599-7603.	4.6	9
492	Boranils: Versatile Multifunctional Organic Fluorophores for Innovative Applications. Organics, 2021, 2, 365-375.	1.3	9
493	Mechanistic Insights into the Photoisomerization of <i>N,N′</i> â€Ðisubstituted Indigos. Chemistry - A European Journal, 2022, 28, .	3.3	9
494	Colorâ€Tunable Multifunctional Excitedâ€State Intramolecular Proton Transfer Emitter: Stimulated Emission of a Single Dye. Chemistry - A European Journal, 2022, 28, .	3.3	9
495	Solvent effects on the geometry and first hyperpolarizability of polymethineimine. Computational and Theoretical Chemistry, 2004, 710, 13-17.	1.5	8
496	Modelling the UV/visible spectrum of tetrakis(phenylethynyl)benzene. Computational and Theoretical Chemistry, 2008, 863, 123-127.	1.5	8
497	New Cyanine Dyes or Not? Theoretical Insights for Model Chains. Journal of Physical Chemistry A, 2011, 115, 2442-2445.	2.5	8
498	Effect of the cation model on the equilibrium structure of poly-L-glutamate in aqueous sodium chloride solution. Journal of Chemical Physics, 2015, 143, 224505.	3.0	8
499	Effects of chemical substitutions on the properties of azacalixphyrins: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 27308-27316.	2.8	8
500	Photoinduced electron transfer in supramolecular ruthenium–porphyrin assemblies. Dalton Transactions, 2017, 46, 2255-2262.	3.3	8
501	Theoretical investigation of the photochromic properties of [2.2]paracyclophane-bridged imidazole dimers and bis(imidazole) dimers. Tetrahedron, 2017, 73, 4936-4949.	1.9	8
502	Synthesis, Characterization, and Optoelectronic Properties of Iridium Complexes Bearing Nonconjugated Six-Membered Chelating Ligands. Inorganic Chemistry, 2018, 57, 2023-2034.	4.0	8
503	Structure of Electronically Reduced N-Donor Bidentate Ligands and Their Heteroleptic Four-Coordinate Zinc Complexes: A Survey of Density Functional Theory Results. Inorganic Chemistry, 2019, 58, 7169-7179.	4.0	8
504	Straightforward Access to Multifunctional Ï€â€Conjugated Pâ€Heterocycles Featuring an Internal Ylidic Bond**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8

#	Article	IF	CITATIONS
505	Longitudinal NLO properties of C2H2, HCCF, and C2F2: Electron correlation and vibration effects. International Journal of Quantum Chemistry, 2005, 102, 209-223.	2.0	7
506	Ab initio investigation of the solvent and electron correlation effects on the geometries and first hyperpolarizabilities of push–pull oligomers. International Journal of Quantum Chemistry, 2007, 107, 2066-2074.	2.0	7
507	Substitution effects on the optical spectra of diarylethene photochroms: <i>ab initio</i> insights. Molecular Simulation, 2010, 36, 74-78.	2.0	7
508	Photochromic properties of a dithienylethene–indolinooxazolidine switch: A theoretical investigation. Computational and Theoretical Chemistry, 2011, 963, 63-70.	2.5	7
509	Molecular Tweezers in Host–Guest Complexes: A Computational Study through a DFT-D Approach. Journal of Physical Chemistry C, 2012, 116, 23067-23074.	3.1	7
510	Design of hybrid conjugates based on chemical similarity. RSC Advances, 2013, 3, 21069.	3.6	7
511	Mutagenic effects induced by the attack of NO2 radical to the guanine-cytosine base pair. Frontiers in Chemistry, 2015, 3, 13.	3.6	7
512	How Adsorption Onto TiO2 Modifies the Properties of Multiswitchable DTE Systems: Theoretical Insights. Journal of Physical Chemistry C, 2015, 119, 16860-16869.	3.1	7
513	H-atom loss and migration in hydrogen-rich peptide cation radicals: The role of chemical environment. International Journal of Mass Spectrometry, 2015, 390, 28-38.	1.5	7
514	Formazanate boron difluoride dyes: discrepancies between TD-DFT and wavefunction descriptions. Journal of Molecular Modeling, 2016, 22, 263.	1.8	7
515	Grafting Spiropyran Molecular Switches on TiO ₂ : A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 18281-18288.	3.1	7
516	Tuning the Spectroscopic Properties of Ratiometric Fluorescent Metal Indicators: Experimental and Computational Studies on Mag-fura-2 and Analogues. Journal of Physical Chemistry B, 2017, 121, 696-705.	2.6	7
517	Di- vs. tetra-substituted quinonediimines: a drastic effect on coordination chemistry. Dalton Transactions, 2017, 46, 12794-12803.	3.3	7
518	Phosphonateâ€Mediated Immobilization of Rhodium/Bipyridine Hydrogenation Catalysts. Chemistry - A European Journal, 2018, 24, 2457-2465.	3.3	7
519	Luminescent molecular switches based on dicationic P-doped polycyclic aromatic hydrocarbons. Materials Advances, 2020, 1, 3369-3377.	5.4	7
520	Investigation of second-order nonlinear optical responses in a series of V-shaped binuclear platinum(<scp>ii</scp>) complexes. Dalton Transactions, 2021, 50, 4623-4633.	3.3	7
521	2,2-Dipicolylamino substituted 2-(2′-hydroxybenzofuranyl) benzoxazole (HBBO) derivative: Towards ratiometric sensing of divalent zinc cations. Dyes and Pigments, 2021, 190, 109338.	3.7	7
522	Long-range effects in optimizing the geometry of stereoregular polymers?IV: Explicit determination of the helical angle. International Journal of Quantum Chemistry, 2001, 85, 539-545.	2.0	6

#	Article	IF	CITATIONS
523	Ab initio studies of the static electronic first hyperpolarizability of polysilanenitrile. Chemical Physics Letters, 2005, 408, 226-231.	2.6	6
524	NLO responses of small polymethineimine oligomers: A CCSD(T) study. Computational and Theoretical Chemistry, 2007, 821, 160-165.	1.5	6
525	Modelling the acidochromism of pyridylazulenes. Chemical Physics Letters, 2008, 457, 91-95.	2.6	6
526	Key Building Block of Photoresponsive Biomimetic Systems. Journal of Physical Chemistry B, 2011, 115, 1232-1242.	2.6	6
527	Structural study of piracetam polymorphs and cocrystals: crystallography redetermination and quantum mechanics calculations. Acta Crystallographica Section B: Structural Science, 2011, 67, 499-507.	1.8	6
528	Analyzing excited-state processes and optical signatures of a ratiomeric fluorine anion sensor: a quantum look. Science China Chemistry, 2014, 57, 1363-1368.	8.2	6
529	Fluorescent 2-(2′-hydroxybenzofuran)benzoxazole (HBBO) borate complexes: synthesis, optical properties, and theoretical calculations. Tetrahedron Letters, 2014, 55, 4136-4140.	1.4	6
530	Dissymmetric Molecular Tweezers in Host–Guest Complexes: Internal or External Complexation?. Journal of Physical Chemistry C, 2015, 119, 3771-3779.	3.1	6
531	Toward an Enhancement of the Photoactivity of Multiphotochromic Dimers Using Plasmon Resonance: A Theoretical Study. Journal of Physical Chemistry Letters, 2015, 6, 3067-3073.	4.6	6
532	A curve-crossing model to rationalize and optimize diarylethene dyads. Chemical Science, 2015, 6, 5695-5702.	7.4	6
533	Photoactivatable platinum(II) compounds: in search of novel anticancer drugs. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	6
534	Elucidating the Nature of Carbazole–Porphyrinoids with First-Principle Approaches. Journal of Physical Chemistry A, 2016, 120, 2824-2831.	2.5	6
535	Trans -disubstituted benzodiazaporphyrin: A promising hybrid dye between porphyrin and phthalocyanine for application in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 186-194.	3.9	6
536	Theoretical Quantification of the Modified Photoactivity of Photochromes Grafted on Metallic Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 21827-21836.	3.1	6
537	Ethynylene-analogues of hemicurcuminoids: Synthesis and ground- and excited properties of their boron difluoride complexes. Dyes and Pigments, 2017, 141, 38-47.	3.7	6
538	Synthesis and spectral properties of non-symmetrical red and near IR emitter dibenzoBODIPYs. Tetrahedron Letters, 2018, 59, 878-881.	1.4	6
539	Theoretical spectroscopy of a NIR-absorbing benziphthalocyanine dye. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	6
540	Design of Twoâ€Photonâ€Excited Fluorescent Dyes Containing Fluoroborylene Groups. ChemPhotoChem, 2019, 3, 719-726.	3.0	6

#	Article	IF	CITATIONS
541	Divergent synthesis of 5′,7′-difluorinated dihydroxanthene-hemicyanine fused near-infrared fluorophores. Organic and Biomolecular Chemistry, 2019, 17, 4291-4300.	2.8	6
542	First principles investigation of the spectral properties of neutral, zwitterionic, and bis-cationic azaacenes. Physical Chemistry Chemical Physics, 2019, 21, 22910-22918.	2.8	6
543	Noncommutative Switching of Double Spiropyrans. Journal of Physical Chemistry A, 2020, 124, 6458-6467.	2.5	6
544	Tailoring the nonlinear absorption of fluorescent dyes by substitution at a boron center. Journal of Materials Chemistry C, 2021, 9, 6225-6233.	5.5	6
545	Less is more: On the effect of benzannulation on solid-state emission of difluoroborates. Journal of Materials Chemistry C, 0, , .	5.5	6
546	Small Panchromatic and NIR Absorbers from Quinoid Zwitterions. Organic Letters, 2020, 22, 7997-8001.	4.6	6
547	Direct transformation of coumarins into orange-red emitting rhodols. Chemical Communications, 2022, 58, 1542-1545.	4.1	6
548	The Kröhnke synthesis of benzo[<i>a</i>]indolizines revisited: towards small, red light emitters. Organic Chemistry Frontiers, 2022, 9, 1861-1874.	4.5	6
549	Hetero‣ubstituted αβâ€Fused BODIPY. Chemistry - A European Journal, 2022, 28, .	3.3	6
550	Impact of DNA Environment on the Intrastrand Cross-Link Lesions: Hydrogen Atom Release as the Last Step of Formation of G[8-5m]T. Journal of Physical Chemistry B, 2013, 117, 16397-16404.	2.6	5
551	A Joint Theoretical and Experimental Study of the Behavior of the DIDS Inhibitor and its Derivatives. ChemPhysChem, 2016, 17, 2434-2445.	2.1	5
552	Exposing the G-quadruplex to electric fields: the role played by telomeres in the propagation of DNA errors. Physical Chemistry Chemical Physics, 2017, 19, 9358-9365.	2.8	5
553	Tuning the Optical Properties of Phenanthriplatin: Towards New Photoactivatable Analogues. ChemPhotoChem, 2017, 1, 504-512.	3.0	5
554	Investigating cyclic peptides inhibiting CD2–CD58 interactions through molecular dynamics and molecular docking methods. Journal of Computer-Aided Molecular Design, 2018, 32, 1295-1313.	2.9	5
555	How To Make Nitroaromatic Compounds Glow: Nextâ€Generation Large Xâ€Shaped, Centrosymmetric Diketopyrrolopyrroles. Angewandte Chemie, 2020, 132, 16238-16247.	2.0	5
556	Planar Chiral Analogues of PRODAN Based on a [2.2]Paracyclophane Scaffold: Synthesis and Photophysical Studies. Journal of Organic Chemistry, 2022, 87, 147-158.	3.2	5
557	Assessment of the Accuracy of TD-DFT Absorption Spectra: Substituted Benzenes. Collection of Czechoslovak Chemical Communications, 2008, 73, 898-908.	1.0	4
558	Enhancement of the second-order NLO responses of boron–nitrogen oligomers by copolymerization with polyyne. Computational and Theoretical Chemistry, 2009, 901, 194-201.	1.5	4

#	Article	IF	CITATIONS
559	Computing redox potentials for dyes used in <i>p</i> â€ŧype dyeâ€sensitized solar cells. International Journal of Quantum Chemistry, 2012, 112, 3763-3768.	2.0	4
560	Molecular Engineering of Efficient Dyes for p-Type Semiconductor Sensitization. Springer Series in Materials Science, 2014, , 215-246.	0.6	4
561	Unexpected benzimidazole ring formation from a quinoneimide species in the presence of ammonium acetate as supporting electrolyte used in the coupling of electrochemistry with mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 456-460.	1.5	4
562	Accessing the free energy profile of a ring closure in a proline-catalyzed reaction using a reactive force field. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	4
563	On the structures, spin states, and optical properties of titanium, platinum, and iron azacalixphyrins: a DFT study. Physical Chemistry Chemical Physics, 2017, 19, 15903-15913.	2.8	4
564	A physico-chemical investigation of fluorine-enriched quinolines. New Journal of Chemistry, 2018, 42, 10036-10047.	2.8	4
565	Hetero-Bimetallic Effect as a Route to Access Multinuclear Complexes. Inorganic Chemistry, 2018, 57, 12536-12542.	4.0	4
566	Central substitution of azacalixphyrins: a strategy towards acidochromic NIR dyes. Physical Chemistry Chemical Physics, 2018, 20, 20056-20069.	2.8	4
567	Daphnanes diterpenes from the latex of Hura crepitans L. And activity against human colorectal cancer cells Caco-2. Bioorganic Chemistry, 2020, 103, 104132.	4.1	4
568	Hochkooperatives Photoschalten in Dihydropyrenâ€Dimeren. Angewandte Chemie, 2020, 132, 19517-19523.	2.0	4
569	Observation of Collective Photoswitching in Free‣tanding TATAâ€Based Azobenzenes on Au(111). Angewandte Chemie - International Edition, 2020, 59, 17192-17196.	13.8	4
570	Stabilization of a 12-ï€ electrons diamino-benzoquinonediimine tautomer. Chemical Communications, 2021, 57, 548-551.	4.1	4
571	Structure illumination microscopy imaging of lipid vesicles in live bacteria with naphthalimide-appended organometallic complexes. Analyst, The, 2021, 146, 3818-3822.	3.5	4
572	Femtosecond Spectroscopy and Nonlinear Optical Properties of azaâ€BODIPY Derivatives in Solution. Chemistry - A European Journal, 2022, 28, .	3.3	4
573	Effects of Chain Substitution on the Structures and Properties of Polyphosphinoborane. Macromolecules, 2004, 37, 5040-5046.	4.8	3
574	Évaluation ab initio de la couleur de diaryléthènes présentant un pont maléimide. Comptes Rendus Chimie, 2007, 10, 1227-1233.	0.5	3
575	Tayloring standard TDDFT approaches for computing UV/Vis transitions in thiocarbonyl chromophores. International Journal of Quantum Chemistry, 2008, 108, 762-773.	2.0	3
576	Stereoselective Synthesis of a Bicyclic Norsesquiterpene Backbone – A Possible Route to Nardosinane Derivatives. European Journal of Organic Chemistry, 2013, 2013, 7083-7094.	2.4	3

#	Article	IF	CITATIONS
577	Theoretical insights on the antioxidant activity of edaravone free radical scavengers derivatives. Chemical Physics Letters, 2014, 599, 73-79.	2.6	3
578	Straightforward metal-free synthesis of an azacalix[6]arene forming a host–guest complex with fullerene C ₆₀ . New Journal of Chemistry, 2017, 41, 5284-5290.	2.8	3
579	Rationalisation of the optical signatures of <i>nor</i> -dihydroxanthene-hemicyanine fused near-infrared fluorophores by first-principle tools. Physical Chemistry Chemical Physics, 2018, 20, 12120-12128.	2.8	3
580	i-Motif DNA structures upon electric field exposure: completing the map of induced genetic errors. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	3
581	Reactivity of 4â€phenylthiazoles in ruthenium catalyzed direct arylations. Applied Organometallic Chemistry, 2019, 33, e4794.	3.5	3
582	Mixed <i>N</i> -aryl/alkyl substitution favours an unusual tautomer of near-infrared absorbing azacalixphyrins. New Journal of Chemistry, 2020, 44, 18130-18137.	2.8	3
583	Quenching of the phosphorescence of thermally reversible photochromic naphthopyran Re(<scp>i</scp>) complexes initiated by either visible or ultraviolet radiation. Dalton Transactions, 2021, 50, 830-834.	3.3	3
584	Azacalixphyrins as an innovative alternative for the free-radical photopolymerization under visible and NIR irradiation without the need of co-initiators. Chemical Communications, 2021, 57, 8973-8976.	4.1	3
585	Asymmetric unit cell polymers with large first hyperpolarizabilities. Synthetic Metals, 1999, 101, 490-491.	3.9	2
586	2,6-Dihydroxyanthraquinone: an isomer of the well known alizarin dye. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4503-o4505.	0.2	2
587	Electronic transitions of neutral and anionic quinolinone HIV-1 integrase inhibitor: Joint theory/experiment investigation. Chemical Physics Letters, 2009, 478, 243-248.	2.6	2
588	Quantitative evaluation of solvation and packing effects on the visible absorption of anthraquinone derivatives. Dyes and Pigments, 2009, 81, 97-102.	3.7	2
589	Ab initio modeling of optical spectra in pHâ€sensitive diarylethenes. International Journal of Quantum Chemistry, 2012, 112, 1122-1133.	2.0	2
590	Spectroscopic properties of mono―and bisâ€azopyrroles. International Journal of Quantum Chemistry, 2012, 112, 2043-2050.	2.0	2
591	Computational investigation on the switching efficiency of diarylethene: Comparison between the first hyperpolarizability and exchange interaction. Chemical Physics Letters, 2016, 659, 258-262.	2.6	2
592	First computational step towards the understanding of the antioxidant activity of the Phycocyanobilin:Ferredoxin Oxidoreductase in complex with biliverdin IXα. Computational and Theoretical Chemistry, 2016, 1077, 58-64.	2.5	2
593	Switchâ€On Diketopyrrolopyrroleâ€Based Chemosensors for Cations Possessing Lewis Acid Character. Chemistry - an Asian Journal, 2021, 16, 355-362.	3.3	2
594	Using Theory To Extend the Scope of Azobenzene Drugs in Chemotherapy: Novel Combinations for a Specific Delivery. ChemMedChem, 2021, 16, 1765-1775.	3.2	2

#	Article	IF	CITATIONS
595	Coumarinâ€Pyronin Hybrid Dyes: Synthesis, Fluorescence Properties and Theoretical Calculations**. ChemPhotoChem, 2021, 5, 822-838.	3.0	2
596	Modified Indulines: From Dyestuffs to <i>In Vivo</i> Theranostic Agents. ACS Applied Materials & Interfaces, 2021, 13, 30337-30349.	8.0	2
597	Si-containing polycyclic aromatic hydrocarbons: synthesis and opto-electronic properties. Chemical Communications, 2021, 58, 88-91.	4.1	2
598	2,2,4,6-Tetraaryl-2H-benzo[h]chromenes: The influence of electronic communication between aryl substituents on their photochromism. Dyes and Pigments, 2022, 199, 110036.	3.7	2
599	Probing the flux of mitochondrial potassium using an azacrown-diketopyrrolopyrrole based highly sensitive probe. Chemical Communications, 2022, 58, 4500-4503.	4.1	2
600	Synthesis and Electron Accepting Properties of Two Di(benz[<i>f</i>]indenone)-Fused Tetraazaanthracene Isomers. Journal of Organic Chemistry, 2022, 87, 3276-3285.	3.2	2
601	Straightforward Access to Multifunctional π onjugated Pâ€Heterocycles Featuring an Internal Ylidic Bond**. Angewandte Chemie, 2022, 134, .	2.0	2
602	Transparent and Colorless Dye‧ensitized Solar Cells Based on Pyrrolopyrrole Cyanine Sensitizers. Angewandte Chemie, 2022, 134, .	2.0	2
603	Probing the performances of HISS functionals for the description of excited states of molecular systems. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	1
604	On the versatility of electronic structures in polymethine dyes. , 2014, , .		1
605	Radical Cyclisation of αâ€Halo Aluminium Acetals: A Mechanistic Study. Chemistry - A European Journal, 2016, 22, 4809-4824.	3.3	1
606	1H NMR and computational studies of the conformations in solution of one host/guest complex formed with an usnic acid tweezer and 2,4,7-trinitro-9-fluorenone (TNF). Tetrahedron, 2016, 72, 2890-2894.	1.9	1
607	Modeling Diarylethene Excited States with Ab Initio Tools: From Model Systems to Large Multimers. , 2017, , 321-341.		1
608	Computational Photochemistry. ChemPhotoChem, 2019, 3, 664-665.	3.0	1
609	Synthesis of heterocyclic enamine-zinc complexes as precursors of stereocontrolled substitution of nitrogen α-position. Tetrahedron Letters, 2020, 61, 152405.	1.4	1
610	Unconventional access to a solvatochromic nickel (II) dye featuring a coordination-induced spin crossover behavior. Dyes and Pigments, 2020, 183, 108645.	3.7	1
611	The Synthesis and Photophysical Properties of Weakly Coupled Diketopyrrolopyrroles. Molecules, 2021, 26, 4744.	3.8	1
612	Time-Dependent Density Functional Theory: A Tool to Explore Excited States. , 2015, , 1-35.		1

#	Article	IF	CITATIONS
613	Cationic [6]Helicenes: Tuning (Chir)Optical Properties up to the Near Infra-Red. Materials Today: Proceedings, 2022, , .	1.8	1
614	Calculation of Hartree-Fock Energy Derivatives in Polymers. Computer Aided Chemical Engineering, 2006, , 3-30.	0.5	0
615	A theoretical investigation of microhydration of cationic amino acids. Chemistry Central Journal, 2009, 3, .	2.6	0
616	A theoretical investigation of microhydration of amino acids. Journal of Cheminformatics, 2010, 2, .	6.1	0
617	Pretreatment of the cockroach cercal afferent/giant interneuron synapses with nicotinoids and neonicotinoids differently affects acetylcholine and nicotine-induced ganglionic depolarizations. Invertebrate Neuroscience, 2013, 13, 91-97.	1.8	0
618	Optical signatures of Boron adducts of Oxasmaragdyrin: insights from theory. Molecular Physics, 2013, 111, 1303-1307.	1.7	0
619	Using Time-Dependent Density Functional Theory to Probe the Nature of Donor-Acceptor Stenhouse Adduct Photochromes. ChemPhysChem, 2016, 17, 1712-1712.	2.1	0
620	Quantum chemical modelling of Ir(III) complexes for OLEDs (Conference Presentation). , 2016, , .		0
621	Analyzing the Relation between Structure and Aggregation Induced Emission (AIE) Properties of Iridium(III) Complexes through Modification of Non-Chromophoric Ancillary Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 135-135.	2.0	0
622	Theory is back in Dyes & amp; Pigments!. Dyes and Pigments, 2020, 176, 108236.	3.7	0
623	Impact of DFT functionals on the predicted magnesium–DNA interaction: an ONIOM study. Highlights in Theoretical Chemistry, 2013, , 271-279.	0.0	0
624	Coordination-enhanced photochromism in dysprosium dinuclear complexes with photomodulated single-molecule magnet behavior. , 0, 4, 2.		0