Paolo Fornasini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414860/publications.pdf

Version: 2024-02-01

172457 197818 3,026 132 29 49 citations h-index g-index papers 132 132 132 1991 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Local structural distortions in SnTe investigated by EXAFS. Journal of Physics Condensed Matter, 2021, 33, 295404.	1.8	7
2	Bond compressibility and bond $Gr\tilde{A}\frac{1}{4}$ neisen parameters of CdTe. Journal of Physics Condensed Matter, 2018, 30, 245402.	1.8	9
3	Nearest-neighbour distribution of distances in crystals from extended X-ray absorption fine structure. Journal of Chemical Physics, 2017, 147, 044503.	3.0	25
4	On EXAFS Debye-Waller factor and recent advances. Journal of Synchrotron Radiation, 2015, 22, 1242-1257.	2.4	87
5	X-ray absorption spectroscopy study of local dynamics and thermal expansion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">ReO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B. 2015. 92	3.2	12
6	Introduction to X-Ray Absorption Spectroscopy. , 2015, , 181-211.		8
7	Vibrational Anisotropy. Springer Series in Optical Sciences, 2015, , 127-142.	0.7	3
8	The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure. Journal of Chemical Physics, 2014, 141, 164503.	3.0	12
9	Local vibrational properties of GaAs studied by extended X-ray absorption fine structure. Journal of Chemical Physics, 2013, 139, 164512.	3.0	16
10	Local Structural Modifications versus Transport Properties in Agl-Doped Silver–Borate Glasses: A Detailed X-ray Absorption Investigation. Journal of Physical Chemistry C, 2013, 117, 6081-6087.	3.1	6
11	Accuracy evaluation in temperature-dependent EXAFS measurements of CdTe. Journal of Synchrotron Radiation, 2013, 20, 603-613.	2.4	16
12	EXAFS parameters and VDOS in zincblende structures. Journal of Physics: Conference Series, 2013, 430, 012004.	0.4	4
13	Thermal effects on Rhodium nanoparticles supported on carbon. Journal of Physics: Conference Series, 2013, 430, 012031.	0.4	10
14	Negative thermal expansion in crystals with the zincblende structure: an EXAFS study of CdTe. Journal of Physics Condensed Matter, 2012, 24, 115403.	1.8	28
15	EXAFS Investigations of the Local Thermal Properties of Solids. E-Journal of Surface Science and Nanotechnology, 2012, 10, 480-485.	0.4	5
16	Recent advances in the study of thermal effects on EXAFS. Diamond Light Source Proceedings, 2010, 1, .	0.1	0
17	COMMENT ON THE BOOK REVIEW OF THE UNCERTAINTY IN PHYSICAL MEASUREMENTS. American Journal of Physics, 2010, 78, 791-791. Negative thermal expansion in crystals with the delafossite structure: An extended x-ray absorption	0.7	0
	fine structure study of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	mn>2 <td>ml:mn></td>	ml:mn>

display="inline"><mml:ms.inmi= http://www.w3.org/1996/Math/MathML"
display="inline"><mml:mrow><mml:mrow><mml:mtext>CuScO</mml:mtext></mml:mrow><mml:mn32</mml:mp></mml:xmlns:mml="http://www.w3.org/1998/Math/MathML"
display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:

#	Article	IF	CITATIONS
19	On the origin of the differences in the Cu K-edge XANES of isostructural and isoelectronic compounds. Journal of Physics Condensed Matter, 2009, 21, 255401.	1.8	3
20	Negative thermal expansion and local dynamics. Journal of Physics: Conference Series, 2009, 190, 012025.	0.4	4
21	Femtometer accuracy EXAFS measurements: Isotopic effect in the first, second and third coordination shells of germanium. Journal of Physics: Conference Series, 2009, 190, 012063.	0.4	12
22	EXAFS and negative thermal expansion in CdTe. Journal of Physics: Conference Series, 2009, 190, 012066.	0.4	1
23	EXAFS studies of negative thermal expansion materials. Physica Status Solidi (B): Basic Research, 2008, 245, 2497-2503.	1.5	14
24	XAFS study of Ni surroundings in metal induced crystallization of thin film amorphous silicon. Solid State Communications, 2008, 147, 401-404.	1.9	7
25	Correlation Between I-Ag Distance and Ionic Conductivity in Agl Fast-Ion-Conducting Glasses. Physical Review Letters, 2008, 101, 155901.	7.8	36
26	The Uncertainty in Physical Measurements. , 2008, , .		74
27	Path-integral Monte Carlo calculation of the effects of thermal disorder in extended x-ray-absorption fine structure of copper. Physical Review B, 2008, 77, .	3.2	26
28	Isotopic Effect In Extended X-Ray-Absorption Fine Structure of Germanium. Physical Review Letters, 2008, 100, 055901.	7.8	38
29	Influence of temperature on the local structure around iodine in fast-ion-conducting Agl:Ag2MoO4glasses. New Journal of Physics, 2007, 9, 88-88.	2.9	17
30	Anharmonic Effective Potential, Correlation Effects, and EXAFS Cumulants Calculated from a Morse Interaction Potential for fcc Metals. Journal of the Physical Society of Japan, 2007, 76, 084601.	1.6	34
31	EXAFS and XRD Studies with Subpicometer Accuracy: The Case of ReO3. AIP Conference Proceedings, 2007, , .	0.4	7
32	Local lattice dynamics and negative thermal expansion in crystals. Journal of Physics: Conference Series, 2007, 92, 012153.	0.4	2
33	Thermal behaviour of the local environment around iodine in fast-ion-conducting Agl-doped glasses. Philosophical Magazine, 2007, 87, 769-777.	1.6	8
34	Negative thermal expansion in CuCl: An extended x-ray absorption fine structure study. Physical Review B, 2007, 75, .	3.2	51
35	Advances in EXAFS Studies of Thermal Properties of Crystals. AIP Conference Proceedings, 2007, , .	0.4	2
36	Negative thermal expansion and local dynamics inCu2OandAg2O. Physical Review B, 2006, 73, .	3.2	95

#	Article	IF	Citations
37	X-ray absorption spectroscopy of strongly disordered glasses: Local structure around Ag ions ingâ^Ag2Oâ^™nB2O3. Physical Review B, 2006, 73, .	3.2	7
38	Einstein and Debye models for EXAFS parallel and perpendicular mean-square relative displacements. Journal of Synchrotron Radiation, 2006, 13, 321-325.	2.4	60
39	Local behaviour of negative thermal expansion materials. Nuclear Instruments & Methods in Physics Research B, 2006, 246, 180-183.	1.4	22
40	Negative thermal expansion in cuprite-type compounds: A combined synchrotron XRPD, EXAFS, and computational study of Cu2O and Ag2O. Journal of Physics and Chemistry of Solids, 2006, 67, 1918-1922.	4.0	24
41	XANES and EXAFS Modelling of Configurational Disorder in Silver Borate Glasses. Physica Scripta, 2005, , 149.	2.5	2
42	EXAFS and XRD Study of Local Dynamics in Cu2O and Ag2O. Physica Scripta, 2005, , 271.	2.5	3
43	Thermal effects on EXAFS: Ensemble averages and real-space approach. Physical Review B, 2005, 72, .	3.2	6
44	EXAFS and LocalThermal Expansion. Physica Scripta, 2005, , 143.	2.5	0
45	EXAFS studies of lattice dynamics and thermal expansion. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3085-3088.	0.8	7
46	Extended x-ray-absorption fine-structure measurements of copper: $\hat{a} \in f$ Local dynamics, anharmonicity, and thermal expansion. Physical Review B, 2004, 70, .	3.2	111
47	X-ray absorption fine structure: characterization of thermal and structural disorder in non-crystalline solids. Journal of Non-Crystalline Solids, 2004, 345-346, 7-15.	3.1	11
48	The thermal behaviour of cuprite: An XRD–EXAFS combined approach. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 231-236.	1.4	35
49	EXAFS and local thermal expansion: The case of silver oxide. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 237-241.	1.4	6
50	Size and surface effects in porous silicon studied by X-ray absorption spectroscopy. Physica Status Solidi A, 2003, 197, 98-102.	1.7	2
51	Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded inSiO2. Physical Review B, 2003, 68, .	3.2	235
52	Chemical composition and local structure of plasma enhanced chemical vapor-deposited Si nanodots and their embedding silica matrix. Applied Physics Letters, 2003, 82, 889-891.	3.3	17
53	Local thermal expansion in copper: Extended x-ray-absorption fine-structure measurements and path-integral Monte Carlo calculations. Physical Review B, 2003, 68, .	3.2	35
54	Local Thermal Expansion in a Cuprite Structure: The Case of Ag 20. Physical Review Letters, 2002, 89, 025503.	7.8	56

#	Article	IF	CITATIONS
55	Local order of Sb and Bi dopants in hydrogenated amorphous germanium thin films studied by extended x-ray absorption fine structure. Applied Physics Letters, 2002, 81, 625-627.	3.3	7
56	Study of lattice dynamics via extended x-ray absorption fine structure. Journal of Physics Condensed Matter, 2001, 13, 7859-7872.	1.8	53
57	EXAFS studies of the local thermal expansion in borate glasses. Journal of Non-Crystalline Solids, 2001, 293-295, 93-99.	3.1	10
58	On the cumulant analysis of EXAFS in crystalline solids. Journal of Synchrotron Radiation, 2001, 8, 1214-1220.	2.4	83
59	Internal stress-induced changes of impurity coordination and doping mechanisms in a-Ge:H doped with column III metals. Solid State Communications, 2000, 115, 89-93.	1.9	8
60	Evidence of x-ray absorption-edge shift as a function of luminescence wavelength in porous silicon. Physical Review B, 2000, 62, 9911-9914.	3.2	17
61	Local coordination and electronic doping of column III metals in hydrogenated amorphous germanium. Journal of Non-Crystalline Solids, 2000, 266-269, 726-729.	3.1	5
62	On the sensitivity of the x-ray excited optical luminescence to the local structure of the luminescent Si sites of porous silicon. Applied Physics Letters, 1999, 74, 1454-1456.	3.3	25
63	Sensitivity of Extended X-Ray-Absorption Fine Structure to Thermal Expansion. Physical Review Letters, 1999, 82, 4240-4243.	7.8	155
64	Local coordination of Ga impurity in hydrogenated amorphous germanium studied by extended x-ray absorption fine-structure spectroscopy. Applied Physics Letters, 1999, 74, 281-283.	3.3	13
65	Local order in light emitting porous silicon studied by XEOL and TEY. Journal of Luminescence, 1998, 80, 103-107.	3.1	14
66	X-ray absorption spectroscopy on light emitting porous silicon by XEOL and TEY. Journal of Non-Crystalline Solids, 1998, 232-234, 370-376.	3.1	16
67	Anharmonicity effects on the extended x-ray-absorption fine structure: The case of cadmium selenide. Physical Review B, 1998, 58, 4793-4802.	3.2	48
68	Local order in hydrogenated amorphous germanium thin films studied by extended x-ray absorption fine-structure spectroscopy. Journal of Physics Condensed Matter, 1997, 9, 5875-5888.	1.8	19
69	EXAFS Debye–Waller Factor and Thermal Vibrations of Crystals. Journal of Synchrotron Radiation, 1997, 4, 243-255.	2.4	164
70	Atomic thermal vibrations in semiconductors: Ab initio calculations and EXAFS measurements. Physica B: Condensed Matter, 1996, 219-220, 436-438.	2.7	17
71	A high-temperature x-ray absorption spectroscopy study of. Journal of Physics Condensed Matter, 1996, 8, 9083-9102.	1.8	20
72	EXAFS analysis for anharmonic systems. Physica B: Condensed Matter, 1995, 208-209, 135-136.	2.7	4

#	Article	IF	CITATIONS
73	EXAFS study of the α-AgI phase stabilized at room temperature in a glass matrix. Physica B: Condensed Matter, 1995, 208-209, 383-384.	2.7	O
74	The local structure of porous silicon investigated by EXAFS. Physica B: Condensed Matter, 1995, 208-209, 559-561.	2.7	1
75	Atomic environments in superionic materials. Nuclear Instruments & Methods in Physics Research B, 1995, 97, 70-74.	1.4	1
76	The local structure of porous silicon studied by EXAFS. Nuclear Instruments & Methods in Physics Research B, 1995, 97, 322-325.	1.4	11
77	Anharmonicity effects on the extended x-ray-absorption fine structure: The case of Î ² -Agl. Physical Review B, 1995, 52, 149-157.	3.2	55
78	Local disorder in crystalline and amorphous germanium. Physical Review B, 1995, 52, 11034-11043.	3.2	66
79	Local structure and dynamics of disordered systems studied by EXAFS. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 71, 751-760.	0.6	7
80	X-ray absorption spectroscopy study of ReO3lattice dynamics. Journal of Physics Condensed Matter, 1995, 7, 1199-1213.	1.8	16
81	EXAFS study of the \hat{l} ±-AgI phase stabilized at room temperature in a glass matrix. Journal of Non-Crystalline Solids, 1995, 192-193, 347-350.	3.1	0
82	An EXAFS study of thermal disorder in GaAs. Journal of Physics Condensed Matter, 1994, 6, 3599-3608.	1.8	16
83	On BSCCO Superconductor-Related Bi2Sr2MnO6+x and BiPbSr2MnO6: X-Ray Absorption Spectroscopy and Diffraction Study. Journal of Solid State Chemistry, 1994, 112, 392-397.	2.9	8
84	Local structure and dynamics in AgI studied by EXAFS and molecular dynamics. Solid State Ionics, 1994, 69, 13-19.	2.7	18
85	Local structure and dynamics of amorphous germanium studied by the cumulant expansion of EXAFS. Journal of Non-Crystalline Solids, 1993, 164-166, 159-162.	3.1	12
86	EXAFS and XANES study of GaAs on Ga and As K edges. Journal of Physics Condensed Matter, 1993, 5, 1643-1654.	1.8	12
87	Cumulant analysis of the extended x-ray-absorption fine structure of \hat{l}^2 -Agl. Physical Review B, 1993, 47, 8502-8514.	3.2	117
88	Anharmonicity of \hat{l}^2 -AgI Studied by the Cumulant Expansion of EXAFS. Japanese Journal of Applied Physics, 1993, 32, 86.	1.5	1
89	Investigation of the Local Thermal Behaviour of GaAs by the Cumulant Analysis of EXAFS. Japanese Journal of Applied Physics, 1993, 32, 89.	1.5	4
90	X-ray Absorption Study of Gallium Arsenide at the Ga and AsK-edges. Japanese Journal of Applied Physics, 1993, 32, 104.	1.5	1

#	Article	IF	Citations
91	Temperature dependence of EXAFS Debye-Waller factors in beta - and gamma -Agl. Journal of Physics Condensed Matter, 1992, 4, 1121-1130.	1.8	2
92	The structure of Ag- and Li-borate glasses of the composition (Ag2O·2B2O3)1-x(AgI)x and (Li2O·2B2O3). Journal of Non-Crystalline Solids, 1992, 150, 140-143.	3.1	15
93	X-ray absorption near edge structure analysis of CdFeTe: XANES experiment and theoretical LMTO calculations. Solid State Communications, 1992, 81, 151-154.	1.9	7
94	Structural study of Agl-Ag2O-B2O3 glasses by X-ray absorption spectroscopy. Solid State Ionics, 1992, 53-56, 1253-1259.	2.7	19
95	L1andL3x-ray-absorption edges of iodine in AgI studied by multiple-scattering theory using complex potentials. Physical Review B, 1991, 44, 11569-11577.	3.2	11
96	XANES spectroscopy of CdFeTe and hypothetical zincâ€blende FeTe (abstract). Journal of Applied Physics, 1991, 69, 6119-6119.	2.5	1
97	X-ray near-edge structure of the II-VI compounds containing manganese: Experimental and theoretical studies of Cd1a^'xMnxTe and Zn1a^'xMnxTe. Physical Review B, 1991, 44, 11075-11084.	3.2	15
98	Correlation effects in the extended x-ray-absorption fine-structure Debye-Waller factors of Agl. Physical Review B, 1990, 41, 9668-9675.	3.2	46
99	X-ray near-edge structure of the II-VI group ternary compounds: Experimental and theoretical studies of CdxHg1â^'xTe andCdxZn1â^'xTe. Physical Review B, 1990, 42, 11114-11122.	3.2	10
100	Short range order in Agl:Ag2O:B2O3 glasses: results from EXAFS and related techniques. Journal of Non-Crystalline Solids, 1990, 123, 310-314.	3.1	32
101	Transmission and reflectivity studies of (AgI)x(Ag2O nB2O3)1â^'x glasses in the 0.5â€"5.9 eV energy range. Journal of Non-Crystalline Solids, 1990, 122, 151-159.	3.1	4
102	X-ray-absorption spectroscopy of ZnTe, CdTe, and HgTe: Experimental and theoretical study of near-edge structures. Physical Review B, 1989, 39, 7895-7904.	3.2	27
103	Exafs studies of the local structure in silver iodide containing glasses: Results and perspectives. Materials Chemistry and Physics, 1989, 23, 85-98.	4.0	7
104	Temperature dependence of the Debye-Waller factors in Agl. Physica B: Condensed Matter, 1989, 158, 407-408.	2.7	2
105	Reflectivity spectra analysis of the Sb40S60 and Sb28S72 non-crystalline thin films. Solid State Communications, 1989, 69, 569-573.	1.9	3
106	XRD and EXAFS study of the local structure in some non-crystalline Sbî—,S compounds. Journal of Non-Crystalline Solids, 1989, 107, 261-270.	3.1	19
107	Ag2O band structure and x-ray-absorption near-edge spectra. Physical Review B, 1989, 39, 9831-9838.	3.2	57
108	Extended X-ray absorption fine structure and vibrational dynamics in Agl. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1989, 59, 143-149.	0.6	2

#	Article	IF	CITATIONS
109	EXAFS structural studies on (AgI)x(Ag2O·4B2O3)1â^'x glasses. Solid State Ionics, 1988, 28-30, 713-716.	2.7	16
110	EXAFS study of the coordination of phosphorus in AgPO 3 glass. Journal of Non-Crystalline Solids, 1988, 106, 181-184.	3.1	9
111	EXAFS studies of silver ion coordination in silver borate glasses. Journal of Non-Crystalline Solids, 1987, 91, 153-164.	3.1	43
112	Local structure in non-crystalline Sbî—,S semiconductors. Journal of Non-Crystalline Solids, 1987, 97-98, 411-414.	3.1	3
113	Short range order of amorphous Sb2S3 thin films: An x-ray diffraction study. Solid State Communications, 1987, 62, 773-776.	1.9	7
114	Adone wiggler beam lines progress report. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 246, 125-130.	1.6	16
115	XANES studies of unoccupied electronic states and local real structure of some antimony chalcogenides. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1986, 7, 293-306.	0.4	3
116	SHORT RANGE ORDER IN SILVER BORATE GLASSES. Journal De Physique Colloque, 1985, 46, C8-101-C8-105.	0.2	6
117	Fine structures at the X-ray L absorption edges of antimony in SbSI. Ferroelectrics, 1984, 56, 257-264.	0.6	0
118	Near edge structure and exafs of antimony Lland Lilledges of SbSI. Ferroelectrics, 1984, 55, 7-10.	0.6	0
119	EXAFS on Silver Borate Glasses. Springer Proceedings in Physics, 1984, , 314-316.	0.2	1
120	XANES in SbSI, Sb2S3,Sb2S5. Springer Proceedings in Physics, 1984, , 461-463.	0.2	0
121	Experimental activity at the adone wiggler facility. Nuclear Instruments & Methods in Physics Research, 1983, 208, 91-96.	0.9	15
122	Optical and X-ray absorption measurements on superionic (AgI)x(Ag2On B2O3)1â^'x glasses. Solid State lonics, 1983, 9-10, 597-602.	2.7	34
123	X-ray absorption measurements at the Ag L3 edge on silver borate glasses with synchrotron radiation. Solid State Communications, 1983, 48, 421-425.	1.9	7
124	Extended X-ray absorption fine structure (EXAFS) at the K edge of cadmium (26.7 keV) with synchrotron radiation. Journal of Physics C: Solid State Physics, 1983, 16, L165-L170.	1.5	5
125	X-ray L absorption spectra and electronic band structure of Sb and SbSI. Journal of Physics C: Solid State Physics, 1983, 16, L1091-L1095.	1.5	8
126	EXAFS studies with synchrotron radiation of polystyrene-ruthenium catalyst. Chemical Physics Letters, 1982, 90, 257-260.	2.6	8

#	ARTICLE	IF	CITATIONS
127	Ramsauerâ€type apparatus for absolute total crossâ€section measurements at intermediate energy. Review of Scientific Instruments, 1981, 52, 979-983.	1.3	22
128	Absolute total cross section measurements for intermediate energy electron scattering II. N2, O2 and NO. Journal of Physics B: Atomic and Molecular Physics, 1981, 14, 1707-1707.	1.6	0
129	The Adone Wiggler facility. Rivista Del Nuovo Cimento, 1981, 4, 1-39.	5.7	12
130	Measurements of total absolute cross sections for 0.2-100 eV electrons on H2. Journal of Physics B: Atomic and Molecular Physics, 1980, 13, 2839-2848.	1.6	50
131	Absolute total cross section measurements for intermediate energy electron scattering. II. N2, O2and NO. Journal of Physics B: Atomic and Molecular Physics, 1980, 13, 4695-4701.	1.6	65
132	Absolute total cross section measurements for intermediate energy electron scattering. I. He. Journal of Physics B: Atomic and Molecular Physics, 1979, 12, 3787-3795.	1.6	35