Yan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress in organic fieldâ€effect transistorâ€based integrated circuits. Journal of Polymer Science, 2022, 60, 311-327.	3.8	46
2	Achieving Efficient pâ€Type Organic Thermoelectrics by Modulation of Acceptor Unit in Photovoltaic <i>Ï€</i> â€Conjugated Copolymers. Advanced Science, 2022, 9, e2103646.	11.2	13
3	Constrain Effect of Charge Traps in Organic Field-Effect Transistors with Ferroelectric Polymer as a Dielectric Interfacial Layer. ACS Applied Materials & Interfaces, 2022, , .	8.0	1
4	lsomeric Acceptor–Acceptor Polymers: Enabling Electron Transport with Strikingly Different Semiconducting Properties in <i>n</i> -Channel Organic Thin-Film Transistors. Chemistry of Materials, 2022, 34, 1403-1413.	6.7	26
5	An all-C–H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers. Matter, 2022, 5, 1953-1968.	10.0	27
6	Dielectric properties and dielectric relaxation process of polymethylphenylsiloxane/silicon dioxide nanocomposites. Journal of Applied Polymer Science, 2022, 139, .	2.6	9
7	A flexible biohybrid reflex arc mimicking neurotransmitter transmission. Cell Reports Physical Science, 2022, 3, 100962.	5.6	6
8	An OFETâ€Based Involutive Logic Circuit with Wideâ€Range Threshold Shift Compensability. Advanced Electronic Materials, 2022, 8, .	5.1	2
9	Molecular Packing and Charge Transport Behaviors of Semiconducting Polymers Over a Wide Temperature Range. Advanced Functional Materials, 2022, 32, .	14.9	8
10	Role of inâ€situ polymethylâ€methacrylate in addition type silicone rubber with specific reference to adhesion and damping properties. Journal of Applied Polymer Science, 2021, 138, 50252.	2.6	4
11	Preparation of durable, self-cleaning and photocatalytic superhydrophobic Ni3S2 coating on 304 stainless steel surface against contaminations. Journal of Materials Science, 2021, 56, 6719-6731.	3.7	7
12	Significantly enhanced thermal stability from a new kind of n-type organic semiconductor DFA4: a fully fused F8IC. Journal of Materials Chemistry C, 2021, 9, 13625-13629.	5.5	4
13	Thiadiazoloquinoxaline-Fused Acenaphthenequinone imide: A Highly Electron-Withdrawing Acceptor for Ambipolar Semiconducting Polymers with Strong Near-Infrared Absorption. Macromolecules, 2021, 54, 3120-3129.	4.8	20
14	Organic Synaptic Transistors: The Evolutionary Path from Memory Cells to the Application of Artificial Neural Networks. Advanced Functional Materials, 2021, 31, 2101951.	14.9	73
15	A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Science Advances, 2021, 7, .	10.3	31
16	Crystal Engineering of Angular-Shaped Heteroarenes Based on Cyclopenta[<i>b</i>]thiopyran for Controlling the Charge Carrier Mobility. Journal of the American Chemical Society, 2021, 143, 11088-11101.	13.7	11
17	Electrically Conductive Metal–Organic Framework Thin Filmâ€Based Onâ€Chip Microâ€Biosensor: A Platform to Unravel Surface Morphologyâ€Đependent Biosensing. Advanced Functional Materials, 2021, 31, 2102855.	14.9	31
18	Regulation of the backbone structure and optoelectrical properties of bis-pyridal[2,1,3]thiadiazole-based ambipolar semiconducting polymers <i>via</i> a fluorination strategy. Journal of Materials Chemistry C, 2021, 9, 15083-15094.	5.5	7

Υάν Ζηάο

#	Article	IF	CITATIONS
19	Bis-acenaphthoquinone diimides with high electron deficiency and good coplanar conformation. Chemical Communications, 2021, 57, 7822-7825.	4.1	13
20	Toward Efficient Charge Transport of Polymer-Based Organic Field-Effect Transistors: Molecular Design, Processing, and Functional Utilization. Accounts of Materials Research, 2021, 2, 1047-1058.	11.7	27
21	Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient. Nature Communications, 2021, 12, 7038.	12.8	23
22	A sulfur-containing hetero-octulene: synthesis, host–guest properties, and transistor applications. Chemical Communications, 2020, 56, 9990-9993.	4.1	15
23	Ultrafast <i>In Situ</i> Synthesis of Large-Area Conductive Metal–Organic Frameworks on Substrates for Flexible Chemiresistive Sensing. ACS Applied Materials & Interfaces, 2020, 12, 57235-57244.	8.0	34
24	Multifunctional Highly Oleophobic and Superhydrophilic Fabric Coatings Prepared by Facile Photopolymerization. Advanced Sustainable Systems, 2020, 4, 2000049.	5.3	18
25	A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability. Journal of Materials Chemistry A, 2019, 7, 2122-2128.	10.3	205
26	Low Bandgap Donor-Acceptor π-Conjugated Polymers From Diarylcyclopentadienone-Fused Naphthalimides. Frontiers in Chemistry, 2019, 7, 362.	3.6	19
27	Bioinspired Slippery Lubricant-Infused Surfaces With External Stimuli Responsive Wettability: A Mini Review. Frontiers in Chemistry, 2019, 7, 826.	3.6	18
28	Attaining Melt Processing of Complementary Semiconducting Polymer Blends at 130 °C via Side-Chain Engineering. ACS Applied Materials & Interfaces, 2018, 10, 4904-4909.	8.0	22
29	Highly mobile charge-transfer excitons in two-dimensional WS ₂ /tetracene heterostructures. Science Advances, 2018, 4, eaao3104.	10.3	132
30	Continuous Meltâ€Drawing of Highly Aligned Flexible and Stretchable Semiconducting Microfibers for Organic Electronics. Advanced Functional Materials, 2018, 28, 1705584.	14.9	39
31	Zoneâ€Annealingâ€Assisted Solventâ€Free Processing of Complementary Semiconducting Polymer Blends for Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1700414.	5.1	9
32	Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science, 2018, 362, 1131-1134.	12.6	147
33	Bisâ€isoindigos: New Electronâ€Deficient Building Blocks for Constructing Conjugated Polymers with Extended Electron Delocalization. Asian Journal of Organic Chemistry, 2018, 7, 2248-2253.	2.7	15
34	A two-dimensional molecule with a large conjugation degree: synthesis, two-photon absorption and charge transport ability. Journal of Materials Chemistry C, 2017, 5, 5199-5206.	5.5	24
35	High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling. ACS Applied Materials & Interfaces, 2017, 9, 15502-15509.	8.0	20
36	Meltâ€Processing of Complementary Semiconducting Polymer Blends for High Performance Organic Transistors. Advanced Materials, 2017, 29, 1605056.	21.0	82

Yan Zhao

#	Article	IF	CITATIONS
37	Direct arylation polymerization of asymmetric push–pull aryl halides. Polymer Chemistry, 2017, 8, 2438-2441.	3.9	14
38	Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo- <i>alt</i> Bithiophene Based Polymer Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 25426-25433.	8.0	58
39	Synthesis and properties of a series of quinoxaline-based copolymers: an example to understand the effect of the structure of the mainchain and sidechain on the charge transport ability of the polymers. Materials Chemistry Frontiers, 2017, 1, 2085-2093.	5.9	9
40	Complementary Semiconducting Polymer Blends: Influence of Side Chains of Matrix Polymers. Macromolecules, 2017, 50, 6202-6209.	4.8	23
41	Asymmetric Supercapacitors: Preparation of MnCo ₂ O ₄ @Ni(OH) ₂ Core–Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance (Adv. Funct. Mater. 23/2016). Advanced Functional Materials, 2016, 26, 4038-4038.	14.9	9
42	Preparation of MnCo ₂ O ₄ @Ni(OH) ₂ Core–Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance. Advanced Functional Materials, 2016, 26, 4085-4093.	14.9	517
43	Anisotropic Chargeâ€Carrier Transport in Highâ€Mobility Donor–Acceptor Conjugated Polymer Semiconductor Films. Chemistry - an Asian Journal, 2016, 11, 2725-2729.	3.3	7
44	Differentiating Two Nitrosylruthenium Isomeric Complexes by Steady-State and Ultrafast Infrared Spectroscopies. Journal of Physical Chemistry B, 2016, 120, 11502-11509.	2.6	4
45	Amine–boranes bearing borane-incompatible functionalities: application to selective amine protection and surface functionalization. Chemical Communications, 2016, 52, 11885-11888.	4.1	32
46	Recent progress in hollow sphere-based electrodes for high-performance supercapacitors. Nanotechnology, 2016, 27, 342001.	2.6	43
47	Thermoelectric Enhancement of Ternary Copper Chalcogenide Nanocrystals by Magnetic Nickel Doping. Advanced Electronic Materials, 2016, 2, 1500473.	5.1	30
48	Structural dynamics of nitrosylruthenium isomeric complexes studied with steady-state and transient pump-probe infrared spectroscopies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 166, 62-67.	3.9	1
49	Complementary Semiconducting Polymer Blends: The Influence of Conjugation-Break Spacer Length in Matrix Polymers. Macromolecules, 2016, 49, 2601-2608.	4.8	61
50	3D Printing: 3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity (Small 44/2015). Small, 2015, 11, 5888-5888.	10.0	1
51	3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity. Small, 2015, 11, 5889-5894.	10.0	93
52	Conjugation-Break Spacers in Semiconducting Polymers: Impact on Polymer Processability and Charge Transport Properties. Macromolecules, 2015, 48, 2048-2053.	4.8	106
53	Complementary Semiconducting Polymer Blends for Efficient Charge Transport. Chemistry of Materials, 2015, 27, 7164-7170.	6.7	57
54	Hot-Injection Synthesis of Cu-Doped Cu ₂ ZnSnSe ₄ Nanocrystals to Reach Thermoelectric <i>zT</i> of 0.70 at 450 °C. ACS Applied Materials & Interfaces, 2015, 7, 24403-24408.	8.0	55

Υάν Ζηάο

#	Article	IF	CITATIONS
55	Organic printed photonics: From microring lasers to integrated circuits. Science Advances, 2015, 1, e1500257.	10.3	172
56	Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy and Environmental Science, 2015, 8, 401-422.	30.8	360
57	Transistors: Inkjet Printing Shortâ€Channel Polymer Transistors with Highâ€Performance and Ultrahigh Photoresponsivity (Adv. Mater. 27/2014). Advanced Materials, 2014, 26, 4752-4752.	21.0	1
58	Inkjet Printing Shortâ€Channel Polymer Transistors with Highâ€Performance and Ultrahigh Photoresponsivity. Advanced Materials, 2014, 26, 4683-4689.	21.0	82
59	Band Gap Tunable Zn2SnO4 Nanocubes through Thermal Effect and Their Outstanding Ultraviolet Light Photoresponse. Scientific Reports, 2014, 4, 6847.	3.3	60
60	A Potential Perylene Diimide Dimerâ€Based Acceptor Material for Highly Efficient Solutionâ€Processed Nonâ€Fullerene Organic Solar Cells with 4.03% Efficiency. Advanced Materials, 2013, 25, 5791-5797.	21.0	444
61	25th Anniversary Article: Recent Advances in nâ€Type and Ambipolar Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 5372-5391.	21.0	608
62	Solution-Processed DPP-Based Small Molecule that Gives High Photovoltaic Efficiency with Judicious Device Optimization. ACS Applied Materials & amp; Interfaces, 2013, 5, 2033-2039.	8.0	163
63	Naphthalenediimide-Based Copolymers Incorporating Vinyl-Linkages for High-Performance Ambipolar Field-Effect Transistors and Complementary-Like Inverters under Air. Chemistry of Materials, 2013, 25, 3589-3596.	6.7	119
64	Wide band gap copolymers based on phthalimide: synthesis, characterization, and photovoltaic properties with 3.70% efficiency. Polymer Chemistry, 2013, 4, 2174.	3.9	28
65	Large-area, flexible imaging arrays constructed by light-charge organic memories. Scientific Reports, 2013, 3, 1080.	3.3	92
66	Substrateâ€Free Ultraâ€Flexible Organic Fieldâ€Effect Transistors and Fiveâ€Stage Ring Oscillators. Advanced Materials, 2013, 25, 5455-5460.	21.0	106
67	Diketopyrrolopyrrole-Based π-Conjugated Copolymer Containing β-Unsubstituted Quintetthiophene Unit: A Promising Material Exhibiting High Hole-Mobility for Organic Thin-Film Transistors. Chemistry of Materials, 2012, 24, 4350-4356.	6.7	85
68	Effect of polymer chain conformation on field-effect transistor performance: synthesis and properties of two arylene imide based D–A copolymers. Journal of Materials Chemistry, 2012, 22, 14639.	6.7	37
69	Effects of structure-manipulated molecular stacking on solid-state optical properties and device performances. Polymer Chemistry, 2012, 3, 2832.	3.9	41
70	Solution-Processed and Air-Stable n-Type Organic Thin-Film Transistors Based on Thiophene-Fused Dicyanoquinonediimine (DCNQI) Deriatives. ACS Applied Materials & Interfaces, 2012, 4, 3994-4000.	8.0	16
71	Phenanthro[1,10,9,8-cdefg]carbazole-containing copolymer for high performance thin-film transistors and polymer solar cells. Journal of Materials Chemistry, 2012, 22, 3696.	6.7	26
72	Synthesis and charge-transporting properties of electron-deficient CN2–fluorene based D–A copolymers. Polymer Chemistry, 2012, 3, 2170.	3.9	24

Υάν Ζηάο

#	Article	IF	CITATIONS
73	A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Scientific Reports, 2012, 2, 754.	3.3	800
74	Benzodifuranâ€containing wellâ€defined Ï€â€conjugated polymers for photovoltaic cells. Journal of Polymer Science Part A, 2012, 50, 2935-2943.	2.3	29
75	Highly Ï€â€Extended Copolymers with Diketopyrrolopyrrole Moieties for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 4618-4622.	21.0	707
76	A structurally ordered thiophene-thiazole copolymer for organic thin-film transistors. Science China Chemistry, 2012, 55, 760-765.	8.2	5
77	Inkjet Printing Highâ€Resolution, Largeâ€Area Graphene Patterns by Coffeeâ€Ring Lithography. Advanced Materials, 2012, 24, 436-440.	21.0	154
78	Two-dimensional copolymers with D–A type side chains for organic thin-film transistors: Synthesis and properties. Polymer Chemistry, 2011, 2, 2842.	3.9	5
79	Inkjetâ€Printed Organic Electrodes for Bottomâ€Contact Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2011, 21, 786-791.	14.9	29
80	Interfacial Heterogeneity of Surface Energy in Organic Fieldâ€Effect Transistors. Advanced Materials, 2011, 23, 1009-1014.	21.0	60
81	Allâ€5olutionâ€Processed, Highâ€Performance nâ€Channel Organic Transistors and Circuits: Toward Low ost Ambient Electronics. Advanced Materials, 2011, 23, 2448-2453.	21.0	172
82	Morphology Optimization for the Fabrication of High Mobility Thinâ€Film Transistors. Advanced Materials, 2011, 23, 3128-3133.	21.0	55
83	Organic Thin-Film Transistors: Interfacial Heterogeneity of Surface Energy in Organic Field-Effect Transistors (Adv. Mater. 8/2011). Advanced Materials, 2011, 23, 1008-1008.	21.0	0
84	Topâ€Gate Organic Thinâ€Film Transistors Constructed by a General Lamination Approach. Advanced Materials, 2010, 22, 3537-3541.	21.0	47
85	Dithiocarbamate-Coated SERS Substrates: Sensitivity Gain by Partial Surface Passivation. Langmuir, 2009, 25, 13833-13839.	3.5	61
86	Dithiocarbamate Assembly on Gold. Journal of the American Chemical Society, 2005, 127, 7328-7329.	13.7	255
87	Nanoprobe implantation into mammalian cells by cationic transfectionElectronic supplementary information (ESI) available: details of instrumentation, nanoprobe implantation and additional microscopy images. See http://www.rsc.org/suppdata/cc/b3/b317061f/. Chemical Communications, 2004, , 784	4.1	23