Joel Eymery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414428/publications.pdf Version: 2024-02-01

LOFI EVMERY

#	Article	IF	CITATIONS
1	Nanowire-based one-dimensional electronics. Materials Today, 2006, 9, 28-35.	14.2	650
2	M-Plane Core–Shell InGaN/GaN Multiple-Quantum-Wells on GaN Wires for Electroluminescent Devices. Nano Letters, 2011, 11, 4839-4845.	9.1	186
3	Self-assembled growth of catalyst-free GaN wires by metal–organic vapour phase epitaxy. Nanotechnology, 2010, 21, 015602.	2.6	178
4	Flexible Light-Emitting Diodes Based on Vertical Nitride Nanowires. Nano Letters, 2015, 15, 6958-6964.	9.1	172
5	Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors. Nano Letters, 2014, 14, 3515-3520.	9.1	171
6	Composition of Wide Bandgap Semiconductor Materials and Nanostructures Measured by Atom Probe Tomography and Its Dependence on the Surface Electric Field. Journal of Physical Chemistry C, 2014, 118, 24136-24151.	3.1	135
7	Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates. Applied Physics Letters, 2010, 97, .	3.3	113
8	Surface diffusion dewetting of thin solid films: Numerical method and application toSiâ^•SiO2. Physical Review B, 2006, 73, .	3.2	92
9	Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors. ACS Photonics, 2016, 3, 597-603.	6.6	89
10	Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging. New Journal of Physics, 2010, 12, 035013.	2.9	71
11	Correlation of Microphotoluminescence Spectroscopy, Scanning Transmission Electron Microscopy, and Atom Probe Tomography on a Single Nano-object Containing an InGaN/GaN Multiquantum Well System. Nano Letters, 2014, 14, 107-114.	9.1	70
12	Ordering of Ge quantum dots with buried Si dislocation networks. Applied Physics Letters, 2002, 80, 3078-3080.	3.3	69
13	Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires. ACS Applied Materials & Interfaces, 2016, 8, 26198-26206.	8.0	66
14	X-ray scattering study of hydrogen implantation in silicon. Journal of Applied Physics, 2006, 99, 103509.	2.5	63
15	Single-wire photodetectors based on InGaN/GaN radial quantum wells in GaN wires grown by catalyst-free metal-organic vapor phase epitaxy. Applied Physics Letters, 2011, 98, .	3.3	63
16	Inversion Domain Boundaries in GaN Wires Revealed by Coherent Bragg Imaging. ACS Nano, 2015, 9, 9210-9216.	14.6	62
17	Accurate control of the misorientation angles in direct wafer bonding. Applied Physics Letters, 2002, 80, 793-795.	3.3	61
18	Effect of the quantum well thickness on the performance of InGaN photovoltaic cells. Applied Physics Letters, 2014, 105, .	3.3	60

#	Article	IF	CITATIONS
19	Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells. Applied Physics Express, 2012, 5, 014101.	2.4	58
20	Strain and Shape of Epitaxial InAs/InP Nanowire Superlattice Measured by Grazing Incidence X-ray Techniques. Nano Letters, 2007, 7, 2596-2601.	9.1	57
21	Enhanced Sb incorporation in InAsSb nanowires grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2011, 98, .	3.3	56
22	Light emitting diodes based on GaN core/shell wires grown by MOVPE on n-type Si substrate. Electronics Letters, 2011, 47, 765-767.	1.0	47
23	Two-Dimensional Electron-Hole Liquid in Single Si Quantum Wells with Large Electronic and Dielectric Confinement. Physical Review Letters, 2004, 92, 236802.	7.8	45
24	<i>M</i> -Plane GaN/InAlN Multiple Quantum Wells in Core–Shell Wire Structure for UV Emission. ACS Photonics, 2014, 1, 38-46.	6.6	42
25	Controlled surface nanopatterning with buried dislocation arrays. Surface Science, 2003, 545, 211-219.	1.9	39
26	Investigation of Photovoltaic Properties of Single Core–Shell GaN/InGaN Wires. ACS Applied Materials & Interfaces, 2015, 7, 21898-21906.	8.0	39
27	Catalyst-free growth of high-optical quality GaN nanowires by metal-organic vapor phase epitaxy. Applied Physics Letters, 2011, 99, .	3.3	38
28	<i>PyNX.Ptycho</i> : a computing library for X-ray coherent diffraction imaging of nanostructures. Journal of Applied Crystallography, 2016, 49, 1842-1848.	4.5	38
29	High-energy x-ray reflectivity of buried interfaces created by wafer bonding. Physical Review B, 2001, 63, .	3.2	37
30	Quantum communication with quantum dot spins. Physical Review B, 2007, 75, .	3.2	36
31	Coherent x-ray wavefront reconstruction of a partially illuminated Fresnel zone plate. Optics Express, 2011, 19, 19223.	3.4	34
32	Experimental and theoretical analysis of transport properties of core–shell wire light emitting diodes probed by electron beam induced current microscopy. Nanotechnology, 2014, 25, 255201.	2.6	34
33	Surface segregation in binary Cu-Ni and Pt-Ni alloys using Monte Carlo simulation. Surface Science, 1990, 231, 419-426.	1.9	33
34	Coherent-diffraction imaging of single nanowires of diameter 95 nanometers. Physical Review B, 2009, 79, .	3.2	30
35	Flexible Capacitive Piezoelectric Sensor with Vertically Aligned Ultralong GaN Wires. ACS Applied Materials & Interfaces, 2018, 10, 4794-4800.	8.0	30
36	Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications. Nanoscale Research Letters, 2013, 8, 61.	5.7	28

#	Article	IF	CITATIONS
37	Exploring Single Semiconductor Nanowires with a Multimodal Hard Xâ€ray Nanoprobe. Advanced Materials, 2014, 26, 7873-7879.	21.0	28
38	Multi-microscopy study of the influence of stacking faults and three-dimensional In distribution on the optical properties of m-plane InGaN quantum wells grown on microwire sidewalls. Applied Physics Letters, 2016, 108, .	3.3	28
39	Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate. Journal of Crystal Growth, 2011, 322, 15-22.	1.5	27
40	Green Electroluminescence from Radial <i>m</i> -Plane InGaN Quantum Wells Grown on GaN Wire Sidewalls by Metal–Organic Vapor Phase Epitaxy. ACS Photonics, 2018, 5, 4330-4337.	6.6	26
41	Elastic relaxation in patterned and implanted strained silicon on insulator. Journal of Applied Physics, 2009, 105, .	2.5	25
42	Equilibrium Shape of Steps and Islands on Polar II-VI Semiconductors Surfaces. Physical Review Letters, 1999, 83, 2366-2369.	7.8	24
43	Electronic and optical properties ofSiâ^•SiO2nanostructures. I. Electron-hole collective processes in singleSiâ^•SiO2quantum wells. Physical Review B, 2005, 72, .	3.2	24
44	Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness. Applied Physics Letters, 2016, 108, .	3.3	24
45	Ultra thin silicon films directly bonded onto silicon wafers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 73, 42-46.	3.5	23
46	Dislocation strain field in ultrathin bonded silicon wafers studied by grazing incidence x-ray diffraction. Physical Review B, 2002, 65, .	3.2	22
47	Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 08JH05.	1.5	22
48	Electronic and optical properties ofSiâ^•SiO2nanostructures. II. Electron-hole recombination at theSiâ^•SiO2quantum-well–quantum-dot transition. Physical Review B, 2005, 72, .	3.2	20
49	Substrate-Free InGaN/GaN Nanowire Light-Emitting Diodes. Nanoscale Research Letters, 2015, 10, 447.	5.7	19
50	Effect of the barrier thickness on the performance of multiple-quantum-well InGaN photovoltaic cells. Japanese Journal of Applied Physics, 2015, 54, 072302.	1.5	19
51	Epitaxial growth of CdTe(0 0 1) studied by scanning tunnelling microscopy. Journal of Crystal Growth, 1998, 184-185, 203-207.	1.5	18
52	Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration. Applied Physics Express, 2014, 7, 032301.	2.4	18
53	InGaN/GaN core/shell nanowires for visible to ultraviolet range photodetection. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 936-940.	1.8	18
54	Role of Underlayer for Efficient Core–Shell InGaN QWs Grown on <i>m</i> -plane GaN Wire Sidewalls. ACS Applied Materials & Interfaces, 2020, 12, 19092-19101.	8.0	18

#	Article	IF	CITATIONS
55	Anisotropic relaxation during the first stages of the growth of ZnTe/(001) CdTe strained layers studied by reflection high energy electron diffraction. Applied Physics Letters, 1995, 66, 3456-3458.	3.3	17
56	X-ray reflectivity of ultrathin twist-bonded silicon wafers. Applied Physics Letters, 1999, 75, 3509-3511.	3.3	17
57	Study of the firstâ€stage relaxation in ZnTe/(001)CdTe strained layers. Applied Physics Letters, 1994, 64, 3631-3633.	3.3	16
58	Impact of Mobility Boosters (XsSOI, CESL, TiN gate) on the Performance of ≪100≫ or ≪110≫ oriented FDSOI cMOSFETs for the 32nm Node. , 2007, , .		16
59	Electrical and diffraction characterization of short and narrow MOSFETs on fully depleted strained silicon-on-insulator (sSOI). Solid-State Electronics, 2010, 54, 861-869.	1.4	16
60	UV Emission from GaN Wires with <i>m</i> -Plane Core–Shell GaN/AlGaN Multiple Quantum Wells. ACS Applied Materials & Interfaces, 2020, 12, 44007-44016.	8.0	16
61	The Growth of Ni Overlayers on Au(100) Buffers Deposited on GaAs(100) and MgO(100) Substrates Materials Research Society Symposia Proceedings, 1991, 237, 511.	0.1	15
62	Molecular beam epitaxial growth of Au(110) layers on MgO(110) substrates. Applied Surface Science, 1993, 68, 203-207.	6.1	15
63	MBE growth of Fe(211)/Au(110) multilayers on MgO(110) substrates. Journal of Magnetism and Magnetic Materials, 1993, 121, 57-59.	2.3	15
64	Silane-Induced N-Polarity in Wires Probed by a Synchrotron Nanobeam. Nano Letters, 2017, 17, 946-952.	9.1	15
65	A first-principles phase stability study on the Au-Ni system. Journal of Physics Condensed Matter, 1994, 6, L47-L52.	1.8	14
66	GaN wire-based Langmuir–Blodgett films for self-powered flexible strain sensors. Nanotechnology, 2014, 25, 375502.	2.6	14
67	Comprehensive analyses of core–shell InGaN/GaN single nanowire photodiodes. Journal Physics D: Applied Physics, 2017, 50, 484001.	2.8	14
68	Crystallographic orientation of facets and planar defects in functional nanostructures elucidated by nano-focused coherent diffractive X-ray imaging. Nanoscale, 2018, 10, 4833-4840.	5.6	14
69	Au-Ni solid solutions studied by numerical relaxation. Journal De Physique, I, 1993, 3, 787-802.	1.2	14
70	Investigation of the epitaxial growth mechanism of ZnTe on (001) CdTe. Journal of Applied Physics, 1995, 77, 3104-3110.	2.5	13
71	Fully Depleted Strained Silicon-on-Insulator p-MOSFETs With Recessed and Embedded Silicon–Germanium Source/Drain. IEEE Electron Device Letters, 2010, 31, 1074-1076.	3.9	13
72	Growth of Ge on Si(001) studied in situ by grazing incidence small angle X-ray scattering. Journal of Crystal Growth, 2005, 275, e2195-e2200.	1.5	12

#	Article	IF	CITATIONS
73	Nanometric artificial structuring of semiconductor surfaces for crystalline growth. Comptes Rendus Physique, 2005, 6, 105-116.	0.9	12
74	X-ray measurements of the strain and shape of dielectric/metallic wrap-gated InAs nanowires. Applied Physics Letters, 2009, 94, 131911.	3.3	12
75	Nanometric patterning with ultrathin twist bonded silicon wafers. Thin Solid Films, 2000, 380, 10-14.	1.8	11
76	Optical properties of single non-polar GaN quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 1652-1656.	1.5	11
77	Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers. Comptes Rendus Physique, 2013, 14, 221-227.	0.9	11
78	Toward two-dimensional self-organization of nanostructures using wafer bonding and nanopatterned silicon surfaces. IEEE Journal of Quantum Electronics, 2002, 38, 995-1005.	1.9	10
79	Controlled Ge quantum dots positioning with nano-patterned Si(001) substrates. Physica Status Solidi (B): Basic Research, 2006, 243, 3963-3967.	1.5	10
80	Ge quantum dots growth on nanopatterned Si(001) surface: Morphology and stress relaxation study. Surface Science, 2006, 600, 3187-3193.	1.9	10
81	Carrier dynamics near a crack in GaN microwires with AlGaN multiple quantum wells. Applied Physics Letters, 2020, 117, .	3.3	10
82	Stretchable Transparent Light-Emitting Diodes Based on InGaN/GaN Quantum Well Microwires and Carbon Nanotube Films. Nanomaterials, 2021, 11, 1503.	4.1	10
83	Grazing incidence X-ray studies of twist-bonded Si/Si and Si/SiO2 interfaces. Physica B: Condensed Matter, 2000, 283, 103-107.	2.7	9
84	Grazing incidence x-ray scattering investigation of Si surface patterned with buried dislocation networks. Applied Physics Letters, 2003, 82, 2598-2600.	3.3	9
85	Time-Dependent Relaxation of Strained Silicon-on-Insulator Lines Using a Partially Coherent X-Ray Nanobeam. Physical Review Letters, 2013, 111, 215502.	7.8	9
86	Thin-Wall GaN/InAlN Multiple Quantum Well Tubes. Nano Letters, 2017, 17, 3347-3355.	9.1	9
87	Towards simulation at picometer-scale resolution: Revisiting inversion domain boundaries in GaN. Physical Review B, 2018, 98, .	3.2	9
88	Colour optimization of phosphor-converted flexible nitride nanowire white light emitting diodes. JPhys Photonics, 2019, 1, 035003.	4.6	9
89	Radiation sensors based on GaN microwires. Journal Physics D: Applied Physics, 2018, 51, 175105.	2.8	8
90	Mapping Inversion Domain Boundaries along Single GaN Wires with Bragg Coherent X-ray Imaging. ACS Nano, 2020, 14, 10305-10312.	14.6	8

#	Article	IF	CITATIONS
91	Interface dilution and morphology of CdTe/MnTe superlattices studied by small angle X-ray scattering. Journal of Crystal Growth, 1998, 184-185, 109-113.	1.5	7
92	(001) silicon surfacial grain boundaries obtained by direct wafer bonding process: accurate control of the structure before bonding. Philosophical Magazine, 2005, 85, 2415-2448.	1.6	7
93	InGaN/GaN multipleâ€quantum well heterostructures for solar cells grown by MOVPE: case studies. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 350-354.	0.8	7
94	Toward Crack-Free Core–Shell GaN/AlGaN Quantum Wells. Crystal Growth and Design, 2021, 21, 6504-6511.	3.0	7
95	Interface dilution and morphology of CdTe/MnTe superlattices studied by small- and large-angle x-ray scattering. Journal of Applied Physics, 2000, 87, 7266-7274.	2.5	6
96	Co-integrated Dual Strained Channels on Fully Depleted sSDOI CMOSFETs with HfO>inf<2>/inf <td></td> <td>6</td>		6
97	Orientation-Dependent Dewetting of Patterned Thin Si Film on SiO ₂ . Materials Research Society Symposia Proceedings, 2006, 910, 5.	0.1	6
98	Thermal Evolution of Implantation Damages in Mg-Implanted GaN Layers Grown on Si. ECS Transactions, 2017, 80, 131-138.	0.5	6
99	Nitride Nanowires for Light Emitting Diodes. Solid State Lighting Technology and Application Series, 2019, , 425-484.	0.3	6
100	A helium mini-cryostat for the nanoprobe beamline ID16B at ESRF: characteristics and performance. Journal of Synchrotron Radiation, 2020, 27, 1074-1079.	2.4	6
101	Large and small angle x-ray scattering studies of CdTe/MgTe superlattices. Journal of Applied Physics, 1999, 86, 1951-1957.	2.5	5
102	Growth and characterization of ZnO nanowires on p-type GaN. Microelectronics Journal, 2009, 40, 250-252.	2.0	5
103	Capping stability of Mg-implanted GaN layers grown on silicon. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600487.	1.8	5
104	Piezo-Potential Generation in Capacitive Flexible Sensors Based on GaN Horizontal Wires. Nanomaterials, 2018, 8, 426.	4.1	5
105	Dual olor Emission from Monolithic <i>m</i> â€Plane Core–Shell InGaN/GaN Quantum Wells. Advanced Photonics Research, 2021, 2, 2000148.	3.6	5
106	Bragg coherent diffraction imaging of single 20â€nm Pt particles at the ID01-EBS beamline of ESRF. Journal of Applied Crystallography, 2022, 55, 621-625.	4.5	5
107	LaueNN: neural-network-based <i>hkl</i> recognition of Laue spots and its application to polycrystalline materials. Journal of Applied Crystallography, 2022, 55, 737-750.	4.5	5
108	In situ characterization of rare earth-CdTe heterostructures by ion beam analysis. Thin Solid Films, 1994, 249, 266-270.	1.8	4

#	Article	IF	CITATIONS
109	Interface roughness correlation in CdTe/CdZnTe strained quantum wells. Journal of Crystal Growth, 1998, 184-185, 886-889.	1.5	4
110	Dislocation Networks Strain Fields Induced By Si Wafer Bonding Materials Research Society Symposia Proceedings, 2001, 673, 1.	0.1	4
111	GIXRD of nanoscale strain patterning in wafer bonding. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 73-78.	1.4	4
112	Width and orientation effects in strained FDSOI MOSFETs: strain and device characterization. , 2009, , .		4
113	Determination of the biaxial stress in strained silicon nano-stripes through polarized oblique incidence Raman spectroscopy. Journal of Applied Physics, 2013, 114, .	2.5	4
114	Extended synchrotron X-ray reflectivity study of a Sm-based layer buried into CdTe(001). Surface Science, 1995, 327, L515-L520.	1.9	3
115	Détermination de contraintes résiduelles en incidence rasante. Apport du rayonnement synchrotron. European Physical Journal Special Topics, 2000, 10, Pr10-103-Pr10-113.	0.2	3
116	STM study of ultra-thin (<2 nm) silicon oxide. Journal of Non-Crystalline Solids, 2003, 322, 174-178.	3.1	3
117	Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features. ECS Transactions, 2006, 3, 947-961.	0.5	3
118	Direct Wafer Bonding for Nanostructure Preparations. Solid State Phenomena, 2007, 121-123, 29-32.	0.3	3
119	Fully depleted Silicon-On-Insulator with back bias and strain for low power and high performance applications. , 2010, , .		3
120	Heat Dissipation in Flexible Nitride Nanowire Light-Emitting Diodes. Nanomaterials, 2020, 10, 2271.	4.1	3
121	Self-powered proton detectors based on GaN core–shell p–n microwires. Applied Physics Letters, 2021, 118, .	3.3	3
122	Aluminium-Nitride Thin-Films On Polymer Substrates Obtained by Adhesive Bonding. ECS Journal of Solid State Science and Technology, 2021, 10, 064001.	1.8	3
123	An Auger depth profile analysis of a sputtered Fe-Ti multilayer structure. Applied Surface Science, 1991, 47, 127-138.	6.1	2
124	X-ray reflectivity of silicon on insulator wafers. Materials Science in Semiconductor Processing, 2001, 4, 31-33.	4.0	2
125	Large and small angle x-ray scattering studies of Si/SiGe superlattices grown by gas-source molecular beam epitaxy. Semiconductor Science and Technology, 2002, 17, 198-204.	2.0	2
126	Photoluminescence of nanometric single silicon quantum wells. Optical Materials, 2005, 27, 1000-1003.	3.6	2

#	Article	IF	CITATIONS
127	XTOP: high-resolution X-ray diffraction and imaging. Journal of Applied Crystallography, 2015, 48, 620-620.	4.5	2
128	Flexible optoelectronic devices based on nitride nanowires embedded in polymer films. , 2016, , .		2
129	Scanning x-ray microscopy imaging of strain relaxation and fluctuations in thin patterned SiGe-on-insulator nanostructures. Journal of Applied Physics, 2021, 129, 095302.	2.5	2
130	A study of the strain distribution by scanning X-ray diffraction on GaP/Si for Ill–V monolithic integration on silicon. Journal of Applied Crystallography, 2019, 52, 809-815.	4.5	2
131	Spatially and Time-Resolved Carrier Dynamics in Core–Shell InGaN/GaN Multiple-Quantum Wells on GaN Wire. Nano Letters, 2021, 21, 9494-9501.	9.1	2
132	X-ray-diffraction study of the lattice distortions induced by a fractional monolayer:ZnTe embedded in vicinal CdTe(001). Physical Review B, 1997, 55, 15804-15812.	3.2	1
133	X-ray Reflectivity Study of Porous Silicon Formation. Materials Research Society Symposia Proceedings, 1998, 536, 293.	0.1	1
134	Stress measurements in thin zirconia films at 300°C using synchrotron radiation. Journal of Neutron Research, 2001, 9, 263-272.	1.1	1
135	Buried hydrophobic silicon bonding studied by high-energy x-ray reflectivity. Journal Physics D: Applied Physics, 2003, 36, A205-A208.	2.8	1
136	Germanium growth on nanopatterned surface studied by STM. Journal of Crystal Growth, 2005, 275, e1609-e1613.	1.5	1
137	Electron hole liquid in silicon single quantum wells. Optical Materials, 2005, 27, 995-999.	3.6	1
138	Surface Evolution of Strained Thin Solid Films: Stability Analysis and Time Evolution of Local Surface Perturbations. , 2007, , .		1
139	Simulation and Characterization of the Strain Induced by an Original "Embedded Buried Nitride" Technique. ECS Transactions, 2009, 19, 37-42.	0.5	1
140	Nitride nanowire light emitting diodes. , 2015, , .		1
141	Optical properties of photodetectors based on single GaN nanowires with a transparent graphene contact. Semiconductors, 2016, 50, 1097-1101.	0.5	1
142	InGaN/GaN nanowire flexible light emitting diodes and photodetectors. , 2017, , .		1
143	Diffusion and Aggregation of Mg Implanted in GaN on Si. , 2018, , .		1
144	Ion beam induced current analysis in GaN microwires. EPJ Web of Conferences, 2020, 233, 05001.	0.3	1

#	Article	IF	CITATIONS
145	Growth of Organised Nano-Objects on Prepatterned Surfaces. , 2007, , 41-67.		1
146	Localized destructive interference in X-ray specular reflectivity. Journal of Applied Crystallography, 1999, 32, 859-863.	4.5	0
147	Investigations of Buried Interfaces Using High Energy X-Ray Reflectivity. Materials Research Society Symposia Proceedings, 2001, 678, .	0.1	0
148	X-ray Characterization of Bonding Interfaces. ECS Meeting Abstracts, 2005, , .	0.0	0
149	Optical properties of ultra thin single Si/SiO/sub 2/ quantum wells. , 0, , .		0
150	Controlled Silicon (001) Surface Periodic Nanopatterning by Direct Wafer Bonding. ECS Transactions, 2006, 3, 261-267.	0.5	0
151	From silicon direct wafer bonding to surface nano-patterning: a way to innovative substrate elaboration. , 2009, , .		0
152	Metal positioning on silicon surfaces using the etching of buried dislocation arrays. Nanotechnology, 2011, 22, 215301.	2.6	0
153	Growth of GaN-based nanorod heterostructures (core-shell) for optoelectronics and their nanocharacterization. , 2015, , 323-335.		0
154	X-ray imaging of single nano-structures: from focused beams to coherent imaging and ptychography. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s147-s147.	0.1	0
155	X-ray imaging of single semi-conductor nanostructures for photonics and electronics. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C501-C501.	0.1	0
156	Strain and Morphology in Nano-Patterned Semiconductors. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, s35-s35.	0.3	0
157	Coherent Bragg imaging of strained semi-conductor nanostructures. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C442-C443.	0.3	0
158	Structural and magnetic characterization of Co/Au(100) epitaxial multilayers. European Physical Journal Special Topics, 1992, 02, C3-245-C3-249.	0.2	0
159	Flexible Light Emitting Diodes Based on Nitride Nanowires. , 2017, , .		0
160	Detailed geometrical characterisation of a surfacial Si (100) grain boundary. , 2018, , 425-428.		0
161	ID16B Beamline at the ESRF: a Nanoprobe for the Characterization of Nanomaterials and Nanodevices. , 0, , .		0