
James G Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined adjuvant effects of ambient vapor-phase organic components and particulate matter potently promote allergic sensitization and Th2-skewing cytokine and chemokine milieux in mice: The importance of mechanistic multi-pollutant research. Toxicology Letters, 2022, 356, 21-32.	0.8	4
2	Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management. Free Radical Biology and Medicine, 2022, 178, 347-359.	2.9	45
3	Neuroinflammatory and Neurometabolomic Consequences From Inhaled Wildfire Smoke-Derived Particulate Matter in the Western United States. Toxicological Sciences, 2022, 186, 149-162.	3.1	16
4	Influx, Persistence, and Recall of Eosinophils and GATA-3+ Innate Lymphoid Cells in the Nasal Mucosa of Mice Exposed and Reexposed to the Gaseous Air Pollutant Ozone. Toxicologic Pathology, 2020, 48, 323-337.	1.8	0
5	Pathogenesis and Persistence of Increased Epithelial Mucosubstances in the Nasal Airways of Rats and Mice Episodically Exposed to Ethylene. Toxicologic Pathology, 2020, 48, 875-886.	1.8	0
6	Airborne particulate matter from goat farm increases acute allergic airway responses in mice. Inhalation Toxicology, 2020, 32, 265-277.	1.6	0
7	Serum-borne factors alter cerebrovascular endothelial microRNA expression following particulate matter exposure near an abandoned uranium mine on the Navajo Nation. Particle and Fibre Toxicology, 2020, 17, 29.	6.2	12
8	Livestock farm particulate matter enhances airway inflammation in mice with or without allergic airway disease. World Allergy Organization Journal, 2020, 13, 100114.	3.5	8
9	Innate Lymphoid Cell–Dependent Airway Epithelial and Inflammatory Responses to Inhaled Ozone: A New Paradigm in Pathogenesis. Toxicologic Pathology, 2019, 47, 993-1003.	1.8	8
10	Strain Differences in a Murine Model of Air Pollutant–induced Nonatopic Asthma and Rhinitis. Toxicologic Pathology, 2017, 45, 161-171.	1.8	12
11	Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone. Toxicologic Pathology, 2017, 45, 692-704.	1.8	26
12	Cardiovascular Depression in Rats Exposed to Inhaled Particulate Matter and Ozone: Effects of Diet-Induced Metabolic Syndrome. Environmental Health Perspectives, 2014, 122, 27-33.	6.0	64
13	Supplementation with γ-tocopherol attenuates endotoxin-induced airway neutrophil and mucous cell responses in rats. Free Radical Biology and Medicine, 2014, 68, 101-109.	2.9	23
14	Two Faces of Vitamin E in the Lung. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 841-842.	5.6	2
15	PM2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions. Particle and Fibre Toxicology, 2014, 11, 25.	6.2	32
16	Differential effects of inhalation exposure to PM2.5 on hypothalamic monoamines and corticotrophin releasing hormone in lean and obese rats. NeuroToxicology, 2013, 36, 106-111.	3.0	45
17	Vitamin E, Î ³ -tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers. Free Radical Biology and Medicine, 2013, 60, 56-62.	2.9	61
18	Vitamin E forms inhibit IL-13/STAT6-induced eotaxin-3 secretion by up-regulation of PAR4, an endogenous inhibitor of atypical PKC in human lung epithelial cells. Journal of Nutritional Biochemistry, 2012, 23, 602-608.	4.2	27

JAMES G WAGNER

#	Article	IF	CITATIONS
19	Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies. Environmental Health, 2012, 11, 45.	4.0	33
20	Effects of proteasome inhibition by a novel imidazoline on ovalbuminâ€induced airway inflammation and hyperresponsiveness. FASEB Journal, 2012, 26, 669.7.	0.5	0
21	Identification of ambient PM2.5 sources and analysis of pollution episodes inÂDetroit, Michigan using highly time-resolved measurements. Atmospheric Environment, 2011, 45, 1627-1637.	4.1	36
22	PM2.5-induced changes in cardiac function of hypertensive rats depend on wind direction and specific sources in Steubenville, Ohio. Inhalation Toxicology, 2011, 23, 417-430.	1.6	18
23	Altered Heart Rate Variability in Spontaneously Hypertensive Rats Is Associated with Specific Particulate Matter Components in Detroit, Michigan. Environmental Health Perspectives, 2011, 119, 474-480.	6.0	30
24	Spatial and temporal expression of CCR3 and the common beta chain of the IL-3, IL-5 and GM-CSF receptor in the nasal epithelium and lymphoid tissues in a rat model of allergic rhinitis. Cytokine, 2010, 52, 194-202.	3.2	12
25	Cardiopulmonary responses in spontaneously hypertensive and Wistar-Kyoto rats exposed to concentrated ambient particles from Detroit, Michigan. Inhalation Toxicology, 2010, 22, 522-533.	1.6	11
26	γ-Tocopherol Attenuates Ozone-induced Exacerbation of Allergic Rhinosinusitis in Rats. Toxicologic Pathology, 2009, 37, 481-491.	1.8	34
27	Comparative Microarray Analysis and Pulmonary Changes in Brown Norway Rats Exposed to Ovalbumin and Concentrated Air Particulates. Toxicological Sciences, 2009, 108, 207-221.	3.1	16
28	Effects of concentrated ambient particles and diesel engine exhaust on allergic airway disease in Brown Norway rats. Research Report (health Effects Institute), 2009, , 5-55.	1.6	13
29	Non-Allergic Models of Mucous Cell Metaplasia and Mucus Hypersecretion in Rat Nasal and Pulmonary Airways. Novartis Foundation Symposium, 2008, , 181-200.	1.1	15
30	Characterization of Urban Atmospheres during Inhalation Exposure Studies in Detroit and Grand Rapids, Michigan. Toxicologic Pathology, 2007, 35, 15-22.	1.8	9
31	Ozone enhancement of lower airway allergic inflammation is prevented by Î ³ -tocopherol. Free Radical Biology and Medicine, 2007, 43, 1176-1188.	2.9	55
32	Rodent models of allergic rhinitis: Relevance to human pathophysiology. Current Allergy and Asthma Reports, 2007, 7, 134-140.	5.3	22
33	The Nose Revisited: A Brief Review of the Comparative Structure, Function, and Toxicologic Pathology of the Nasal Epithelium. Toxicologic Pathology, 2006, 34, 252-269.	1.8	398
34	Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI. Atmospheric Environment, 2006, 40, 3823-3834.	4.1	62
35	Pulmonary Retention of Particulate Matter is Associated with Airway Inflammation in Allergic Rats Exposed to Air Pollution in Urban Detroit. Inhalation Toxicology, 2004, 16, 663-674.	1.6	45
36	Effects of concentrated ambient particles on normal and hypersecretory airways in rats. Research Report (health Effects Institute), 2004, , 1-68; discussion 69-79.	1.6	19

JAMES G WAGNER

#	Article	IF	CITATIONS
37	Enhancement of Nasal Inflammatory and Epithelial Responses after Ozone and Allergen Coexposure in Brown Norway Rats. Toxicological Sciences, 2002, 67, 284-294.	3.1	48
38	Pulmonary Leukostasis and the Inhibition of Airway Neutrophil Recruitment are Early Events in the Endotoxemic Rat. Shock, 2002, 17, 151-158.	2.1	25
39	Effects of Ozone and Endotoxin Coexposure on Rat Airway Epithelium: Potentiation of Toxicant-Induced Alterations. Environmental Health Perspectives, 2001, 109, 591.	6.0	4
40	Inhibition of Pulmonary Neutrophil Trafficking during Endotoxemia Is Dependent on the Stimulus for Migration. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 769-776.	2.9	33
41	Neutrophil migration during endotoxemia. Journal of Leukocyte Biology, 1999, 66, 10-24.	3.3	177