
Shin-Ichi Orimo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex Hydrides for Hydrogen Storage. Chemical Reviews, 2007, 107, 4111-4132.	23.0	1,963
2	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	2.8	518
3	Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments. Physical Review B, 2006, 74, .	1.1	465
4	Recent Progress in Metal Borohydrides for Hydrogen Storage. Energies, 2011, 4, 185-214.	1.6	412
5	Dehydriding and rehydriding reactions of. Journal of Alloys and Compounds, 2005, 404-406, 427-430.	2.8	410
6	Lithium superionic conduction in lithium borohydride accompanied by structural transition. Applied Physics Letters, 2007, 91, .	1.5	392
7	Halide-Stabilized LiBH ₄ , a Room-Temperature Lithium Fast-Ion Conductor. Journal of the American Chemical Society, 2009, 131, 894-895.	6.6	357
8	The renaissance of hydrides as energy materials. Nature Reviews Materials, 2017, 2, .	23.3	349
9	Materials science of Mg-Ni-based new hydrides. Applied Physics A: Materials Science and Processing, 2001, 72, 167-186.	1.1	336
10	Tetrahydroborates as new hydrogen storage materials. Scripta Materialia, 2007, 56, 823-828.	2.6	303
11	Superconductivity in the Metal Rich Li-Pd-B Ternary Boride. Physical Review Letters, 2004, 93, 247004.	2.9	272
12	First-principles study on lithium borohydrideLiBH4. Physical Review B, 2004, 69, .	1.1	270
13	A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nature Communications, 2019, 10, 1081.	5.8	252
14	Sodium superionic conduction in Na ₂ B ₁₂ H ₁₂ . Chemical Communications, 2014, 50, 3750-3752.	2.2	243
15	Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy and Environmental Science, 2015, 8, 3637-3645.	15.6	235
16	Lithium Fastâ€lonic Conduction in Complex Hydrides: Review and Prospects. Advanced Energy Materials, 2011, 1, 161-172.	10.2	229
17	Hydrogen in the mechanically prepared nanostructured graphite. Applied Physics Letters, 1999, 75, 3093-3095.	1.5	227
18	Exceptional Superionic Conductivity in Disordered Sodium Decahydroâ€ <i>closo</i> â€decaborate. Advanced Materials, 2014, 26, 7622-7626.	11.1	221

2

#	Article	IF	CITATIONS
19	Experimental studies on intermediate compound of LiBH4. Applied Physics Letters, 2006, 89, 021920.	1.5	220
20	Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding. Acta Materialia, 1997, 45, 331-341.	3.8	217
21	Destabilization of Li-based complex hydrides. Journal of Alloys and Compounds, 2004, 370, 271-275.	2.8	213
22	Dehydriding and rehydriding processes of well-crystallized Mg(BH4)2 accompanying with formation of intermediate compounds. Acta Materialia, 2008, 56, 1342-1347.	3.8	202
23	Hydrogen desorption property of mechanically prepared nanostructured graphite. Journal of Applied Physics, 2001, 90, 1545-1549.	1.1	194
24	Liquidâ€Like Ionic Conduction in Solid Lithium and Sodium Monocarbaâ€ <i>closo</i> â€Decaborates Near or at Room Temperature. Advanced Energy Materials, 2016, 6, 1502237.	10.2	190
25	First-principles study on the stability of intermediate compounds ofLiBH4. Physical Review B, 2006, 74, .	1.1	189
26	Complex Hydrides for Electrochemical Energy Storage. Advanced Functional Materials, 2014, 24, 2267-2279.	7.8	184
27	Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. Journal of Alloys and Compounds, 2002, 330-332, 526-530.	2.8	183
28	Complex Hydrides with (BH ₄) ^{â^'} and (NH ₂) ^{â^'} Anions as New Lithium Fast-Ion Conductors. Journal of the American Chemical Society, 2009, 131, 16389-16391.	6.6	183
29	Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2. Scripta Materialia, 2007, 57, 679-682.	2.6	174
30	Thermodynamical stability of calcium borohydrideCa(BH4)2. Physical Review B, 2006, 74, .	1.1	169
31	Destabilization of LiBH4 by mixing with LiNH2. Applied Physics A: Materials Science and Processing, 2005, 80, 1409-1412.	1.1	161
32	Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities. Journal of Alloys and Compounds, 2007, 446-447, 315-318.	2.8	159
33	Material properties of MBH4 (). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 51-53.	1.7	153
34	Reversible dehydrogenation of magnesium borohydride to magnesium triborane in the solid state under moderate conditions. Chemical Communications, 2011, 47, 1330-1332.	2.2	149
35	Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba- <i>closo</i> -borate Salts. ACS Energy Letters, 2016, 1, 659-664.	8.8	147
36	Structural and hydriding properties of the Mg_Ni_H system with nano- and/or amorphous structures. Acta Materialia, 1997, 45, 2271-2278.	3.8	135

#	Article	IF	CITATIONS
37	Synthesis and dehydriding studies of Mg–N–H systems. Journal of Power Sources, 2004, 138, 309-312.	4.0	125
38	Hydrogen storage properties of Mg[BH4]2. Journal of Alloys and Compounds, 2008, 459, 583-588.	2.8	124
39	All-solid-state lithium battery with LiBH4 solid electrolyte. Journal of Power Sources, 2013, 226, 61-64.	4.0	123
40	Thermodynamical stabilities of metal-borohydrides. Journal of Alloys and Compounds, 2007, 446-447, 296-300.	2.8	122
41	Destabilization and enhanced dehydriding reaction of LiNH2: an electronic structure viewpoint. Applied Physics A: Materials Science and Processing, 2004, 79, 1765-1767.	1.1	119
42	Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Scientific Reports, 2016, 6, 23592.	1.6	119
43	In situ study of hydriding–dehydriding properties in some Pd/Mg thin films with different degree of Mg crystallization. Journal of Alloys and Compounds, 1999, 293-295, 484-489.	2.8	116
44	Stable Interface Formation between TiS ₂ and LiBH ₄ in Bulk-Type All-Solid-State Lithium Batteries. Chemistry of Materials, 2015, 27, 5407-5416.	3.2	116
45	Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Applied Physics Letters, 2014, 105, .	1.5	113
46	Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2. Journal of Alloys and Compounds, 2004, 366, 269-273.	2.8	112
47	Effects of nanometer-scale structure on hydriding properties of Mgî—,Ni alloys: a review. Intermetallics, 1998, 6, 185-192.	1.8	111
48	Hydriding properties of the Mg2Ni-H system synthesized by reactive mechanical grinding. Journal of Alloys and Compounds, 1996, 232, L16-L19.	2.8	110
49	Hydrogen density in nanostructured carbon, metals and complex materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 9-18.	1.7	108
50	Structural and hydriding properties of MgYNi4:. Journal of Alloys and Compounds, 2000, 309, L1-L4.	2.8	107
51	Formation of an intermediate compound with a B12H12cluster: experimental and theoretical studies on magnesium borohydride Mg(BH4)2. Nanotechnology, 2009, 20, 204013.	1.3	104
52	Reversible hydrogen-storage functions for mixtures of Li3N and Mg3N2. Applied Physics A: Materials Science and Processing, 2005, 80, 1-3.	1.1	103
53	Hydrogen in mechanically prepared nanostructured h-BN: a critical comparison with that in nanostructured graphite. Applied Physics Letters, 2002, 80, 318-320.	1.5	99
54	Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scripta Materialia, 2007, 57, 751-753.	2.6	99

		S	бнім-Існі О	RIMO	
#	Article			IF	CITATIONS
55	Stabilization of lithium superionic conduction phase and enhancement of conductivity LiCl addition, Applied Physics Letters, 2009, 94 Experimental and computational studies on solvent-free rare-earth metal borohydrides xmlns:mml="http://www.w3.org/1998/Math/MathML"	of LiBH4 by cmml:math		1.5	96
56	XIIIIIS:IIIIII= IIttp.//www.wo.org/1990/wath/wathivit				

#	Article	IF	CITATIONS
73	Location of deuterium atoms absorbed in nanocrystalline graphite prepared by mechanical alloying. Journal of Alloys and Compounds, 2001, 327, 224-229.	2.8	74
74	Development of metal borohydrides for hydrogen storage. Journal of Physics and Chemistry of Solids, 2008, 69, 2292-2296.	1.9	73
75	Effect of Hydrogen Absorption on Superconductivity in YBa2Cu3O6.91and GdBa2Cu3O6.89. Japanese Journal of Applied Physics, 1988, 27, L525-L528.	0.8	71
76	Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery. Applied Physics Letters, 2017, 110, .	1.5	71
77	First-principles study on copper-substituted lithium borohydride, (Li1â^'xCux)BH4. Journal of Alloys and Compounds, 2005, 404-406, 140-143.	2.8	67
78	Site occupancy of interstitial deuterium atoms in face-centred cubic iron. Nature Communications, 2014, 5, 5063.	5.8	67
79	Reversible hydriding and dehydriding reactions of perovskite-type hydride NaMgH3. Scripta Materialia, 2005, 53, 319-322.	2.6	66
80	Hydrogen storage properties of Li–Mg–N–H systems. Journal of Alloys and Compounds, 2005, 404-406, 396-398.	2.8	66
81	Structural and dehydriding properties of Ca(BH4)2. Applied Physics A: Materials Science and Processing, 2008, 92, 601-605.	1.1	66
82	Sodium ionic conduction in complex hydrides with [BH4]â^' and [NH2]â^' anions. Applied Physics Letters, 2012, 100, .	1.5	66
83	Fast Lithium-Ion Conduction in Atom-Deficient <i>closo</i> -Type Complex Hydride Solid Electrolytes. Chemistry of Materials, 2018, 30, 386-391.	3.2	66
84	Hydrogen storage properties in nano-structured magnesium- and carbon-related materials. Physica B: Condensed Matter, 2003, 328, 77-80.	1.3	65
85	Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH ₄ –LiI Solid Solution. Journal of Physical Chemistry C, 2013, 117, 3249-3257.	1.5	65
86	Formation of Intermediate Compound Li ₂ B ₁₂ H ₁₂ during the Dehydrogenation Process of the LiBH ₄ –MgH ₂ System. Journal of Physical Chemistry C, 2011, 115, 19419-19423.	1.5	64
87	Rotational Motion in LiBH ₄ /Lil Solid Solutions. Journal of Physical Chemistry A, 2011, 115, 5329-5334.	1.1	64
88	Magnesium Borohydride Ammonia Borane as a Magnesium Ionic Conductor. ACS Applied Energy Materials, 2020, 3, 3174-3179.	2.5	64
89	Hydrogen Absorption and Desorption by the Liâ^'Alâ^'Nâ^'H System. Journal of Physical Chemistry B, 2006, 110, 9632-9636.	1.2	63
90	Dehydriding reaction of metal hydrides and alkali borohydrides enhanced by microwave irradiation. Applied Physics Letters, 2006, 88, 112104.	1.5	63

#	Article	IF	CITATIONS
91	Pseudo-binary electrolyte, LiBH ₄ –LiCl, for bulk-type all-solid-state lithium-sulfur battery. Nanotechnology, 2015, 26, 254001.	1.3	63
92	Sodium and magnesium ionic conduction in complex hydrides. Journal of Alloys and Compounds, 2013, 580, S98-S101.	2.8	61
93	Hydrogen in Nanostructured, Carbon-Related, and Metallic Materials. MRS Bulletin, 2002, 27, 705-711.	1.7	58
94	Surface changes on AlH3 during the hydrogen desorption. Applied Physics Letters, 2010, 96, .	1.5	58
95	Hydrogen interaction with carbon nanostructures: current situation and future prospects. Journal of Alloys and Compounds, 2003, 356-357, 716-719.	2.8	57
96	Unexpected dehydrogenation behavior of LiBH4/Mg(BH4)2 mixture associated with the in situ formation of dual-cation borohydride. Journal of Alloys and Compounds, 2010, 491, L1-L4.	2.8	57
97	Room temperature lithium fast-ion conduction and phase relationship of Lil stabilized LiBH4. Solid State Ionics, 2011, 192, 143-147.	1.3	57
98	Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 2020, 26, 69-76.	1.2	57
99	Hydriding properties of the MgNi-based systems. Journal of Alloys and Compounds, 1999, 293-295, 437-442.	2.8	55
100	Recent progress in hydrogen-rich materials from the perspective of bonding flexibility of hydrogen. Scripta Materialia, 2015, 109, 1-5.	2.6	55
101	Cooperative hydriding properties in a nanostructured Mg2Ni–H system. Journal of Alloys and Compounds, 1997, 253-254, 80-83.	2.8	54
102	Selective Reversible Hydrogenation of Mg(B ₃ H ₈) ₂ /MgH ₂ to Mg(BH ₄) ₂ : Pathway to Reversible Borane-Based Hydrogen Storage?. Inorganic Chemistry, 2015, 54, 4120-4125.	1.9	53
103	Dehydriding reaction of AlH ₃ : <i>in situ</i> microscopic observations combined with thermal and surface analyses. Nanotechnology, 2009, 20, 204004.	1.3	52
104	Breaking the passivation—the road to a solvent free borohydride synthesis. Physical Chemistry Chemical Physics, 2010, 12, 10919.	1.3	52
105	Dehydriding reaction of Mg(NH2)2–LiH system under hydrogen pressure. Journal of Alloys and Compounds, 2007, 428, 307-311.	2.8	50
106	Dehydriding and rehydriding properties of yttrium borohydride Y(BH4)3 prepared by liquid-phase synthesis. International Journal of Hydrogen Energy, 2009, 34, 5732-5736.	3.8	48
107	Complex hydrides as room-temperature solid electrolytes for rechargeable batteries. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	48
108	Optical transmission of magnesium hydride thin film with characteristic nanostructure. Journal of Alloys and Compounds, 2002, 330-332, 352-356.	2.8	47

#	Article	IF	CITATIONS
109	Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics. Scripta Materialia, 2016, 124, 108-111.	2.6	47
110	Lithium-ion conduction in complex hydrides LiAlH4 and Li3AlH6. Journal of Applied Physics, 2010, 107, .	1.1	46
111	Synthesis and Lithium Fast-Ion Conductivity of a New Complex Hydride Li ₃ (NH ₂) ₂ I with Double-Layered Structure. Chemistry of Materials, 2010, 22, 2702-2704.	3.2	46
112	Full-cell hydride-based solid-state Li batteries for energy storage. International Journal of Hydrogen Energy, 2019, 44, 7875-7887.	3.8	46
113	Remarkable Hydrogen Storage, Structural and Optical Properties in Multi-layered Pd/Mg Thin Films. Materials Transactions, 2002, 43, 2721-2727.	0.4	45
114	Formation ability of the perovskite-type structure in LixNa1â^'xMgH3 (x=0, 0.5 and 1.0). Acta Materialia, 2005, 53, 3453-3457.	3.8	45
115	Enhancement of superconductivity in Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 1989, 157, 263-266.	0.6	44
116	Diffuse and doubly split atom occupation in hexagonal LiBH4. Applied Physics Letters, 2009, 95, .	1.5	43
117	Bulk-Type All-Solid-State Lithium Batteries Using Complex Hydrides Containing Cluster-Anions. Materials Transactions, 2016, 57, 1639-1644.	0.4	43
118	Hydriding properties of a nano-/amorphous-structured Mg–Ni–H system. Journal of Alloys and Compounds, 1997, 253-254, 94-97.	2.8	41
119	Hydrogen in nanostructured vanadium-hydrogen systems. Physical Review B, 2001, 63, .	1.1	41
120	Interfacial stability between LiBH4-based complex hydride solid electrolytes and Li metal anode for all-solid-state Li batteries. Journal of Power Sources, 2019, 436, 226821.	4.0	41
121	Guidelines for Developing Amide-Based Hydrogen Storage Materials. Materials Transactions, 2005, 46, 2093-2097.	0.4	40
122	Dehydriding process of α-AlH3 observed by transmission electron microscopy and electron energy-loss spectroscopy. Journal of Applied Physics, 2009, 105, .	1.1	40
123	Fast lithium-ionic conduction in a new complex hydride–sulphide crystalline phase. Chemical Communications, 2016, 52, 564-566.	2.2	40
124	Thermodynamical stability and electronic structure of a perovskite-type hydride, NaMgH3. Journal of Alloys and Compounds, 2007, 446-447, 162-165.	2.8	39
125	Comparison of Anion Reorientational Dynamics in MCB ₉ H ₁₀ and M ₂ B ₁₀ H ₁₀ (M = Li, Na) via Nuclear Magnetic Resonance and Quasielastic Neutron Scattering Studies, Journal of Physical Chamistry C, 2017, 121, 1000-1012.	1.5	39
126	Quasielastic Neutron Scattering Studies, Journal of Physical Chemistry C, 2017, 121, 1000-1012. superconductivity of the hydrogen-rich metal hydride Amml:math mathyariant="http://www.w3.org/1998/Math/MathML"> <mml:math mathyariant="normal">L<mml:msub><mml:mi mathyariant="normal">L<mml:msub><mml:mi mathyariant="normal">I<mml:mn>5</mml:mn></mml:mi </mml:msub><mml:mi>Mo</mml:mi><mml:msub><m mathyariant="normal">H<mml:mn>1</mml:mn></m </mml:msub></mml:mi </mml:msub>mathyariant="normal">Hmathyariant="normal">Hmathyariant="normal">Hsub>sub>mathyariant="normal">Mo sub>su</mml:math 	1.1 ml:mi	39

#	Article	IF	CITATIONS
127	Synthesis and Hydrogen Storage Properties of a Single-Phase Magnesium Borohydride Mg(BH ₄) ₂ . Materials Transactions, 2008, 49, 2224-2228.	0.4	38
128	True Boundary for the Formation of Homoleptic Transitionâ€Metal Hydride Complexes. Angewandte Chemie - International Edition, 2015, 54, 5650-5653.	7.2	38
129	Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification. Journal of Energy Chemistry, 2020, 43, 47-51.	7.1	38
130	Monocarborane cluster as a stable fluorine-free calcium battery electrolyte. Scientific Reports, 2021, 11, 7563.	1.6	38
131	Structural and hydriding properties of (Mg1â^'xAlx)Ni–H(D) with amorphous or CsCl-type cubic structure (x=0–0.5). Acta Materialia, 1998, 46, 4519-4525.	3.8	37
132	Magnetization measurements on Li[sub 2]Pd[sub 3]B superconductor. Applied Physics Letters, 2004, 85, 4433.	1.5	36
133	First-principles study on thermodynamical stability of metal borohydrides: Aluminum borohydride Al(BH4)3. Journal of Alloys and Compounds, 2007, 446-447, 310-314.	2.8	36
134	Effect of the surface oxidation of LiBH4 on the hydrogen desorption mechanism. Physical Chemistry Chemical Physics, 2010, 12, 10950.	1.3	36
135	Thermal stabilities of amorphous Mg(Ni1â^'xTx) (Tî—»3d transition metals; x=0, 0.2, 0.4 and 0.5). Journal of Alloys and Compounds, 1997, 260, 143-146.	2.8	35
136	Synthesis and dehydrogenation of M(AlH4)2 (M=Mg, Ca). Journal of Alloys and Compounds, 2007, 446-447, 237-241.	2.8	35
137	Formation and Hydrogen Storage Properties of Dual-Cation (Li, Ca) Borohydride. Journal of Physical Chemistry C, 2010, 114, 22736-22741.	1.5	35
138	Thermodynamical Stability of Complex Transition Metal Hydrides M ₂ FeH ₆ . Journal of Physical Chemistry C, 2013, 117, 8014-8019.	1.5	35
139	Lithium ionic conduction in composites of Li(BH4)0.7510.25 and amorphous 0.75Li2S·0.25P2S5 for battery applications. Electrochimica Acta, 2018, 278, 332-339.	2.6	35
140	Reactive mechanical grinding of ZrNi under various partial pressures of hydrogen. Journal of Alloys and Compounds, 1995, 217, 287-294.	2.8	34
141	Cobalt- and copper-substitution effects on thermal stabilities and hydriding properties of amorphous MgNi. Journal of Alloys and Compounds, 1998, 280, 279-283.	2.8	33
142	Formation process of perovskite-type hydride LiNiH3: <i>In situ</i> synchrotron radiation X-ray diffraction study. Applied Physics Letters, 2013, 102, .	1.5	33
143	Carbonâ€Rich Active Materials with Macrocyclic Nanochannels for Highâ€Capacity Negative Electrodes in Allâ€Solidâ€State Lithium Rechargeable Batteries. Small, 2016, 12, 3381-3387.	5.2	33
144	Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6. Journal of Applied Physics, 2012, 111, .	1.1	32

#	Article	IF	CITATIONS
145	Formation of novel transition metal hydride complexes with ninefold hydrogen coordination. Scientific Reports, 2017, 7, 44253.	1.6	32
146	Effects of microwave irradiation on the dehydriding reaction of the composites of lithium borohydride and microwave absorber. Applied Physics Letters, 2007, 90, 232907.	1.5	31
147	Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density. APL Materials, 2014, 2, .	2.2	31
148	Hexagonal Close-packed Iron Hydride behind the Conventional Phase Diagram. Scientific Reports, 2019, 9, 12290.	1.6	31
149	Structural observation of nano-structured and amorphous hydrogen storage materials by neutron diffraction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 105-113.	1.7	30
150	Perovskite-type hydrides – synthesis, structures and properties. International Journal of Materials Research, 2008, 99, 471-479.	0.1	30
151	Surface and bulk reactions in borohydrides and amides. Energy and Environmental Science, 2012, 5, 6823.	15.6	30
152	Hydrogen diffusion in metallic and nanostructured materials. Physica B: Condensed Matter, 2003, 328, 81-89.	1.3	29
153	Hydrogen in mechanically milled amorphous boron. Journal of Alloys and Compounds, 2003, 350, 218-221.	2.8	29
154	Formation Process of [B ₁₂ H ₁₂] ^{2−} from [BH ₄] [−] during the Dehydrogenation Reaction of Mg(BH ₄) ₂ . Materials Transactions, 2011, 52, 1443-1446.	0.4	29
155	Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties. Progress in Energy, 2022, 4, 032007.	4.6	29
156	The local structure of hydrogen storage nanocrystalline graphite by neutron scattering. Journal of Alloys and Compounds, 2003, 356-357, 608-611.	2.8	28
157	NMR studies of hydrogen motion in nanostructured hydrogen–graphite systems. Journal of Alloys and Compounds, 2003, 356-357, 617-621.	2.8	28
158	Raman Scattering and Infrared Absorption Investigation of Hydrogen Configuration State in Mechanically Milled Graphite under H2Gas Atmosphere. Journal of the Physical Society of Japan, 2004, 73, 553-555.	0.7	28
159	Magnetic Phase Transition of MnBi under High Magnetic Fields and High Temperature. Materials Transactions, 2007, 48, 2414-2418.	0.4	28
160	Formation region and hydrogen storage abilities of perovskite-type hydrides. Progress in Solid State Chemistry, 2007, 35, 329-337.	3.9	28
161	Crystal structure and charge density analysis of Ca(BH4)2. Journal of Alloys and Compounds, 2010, 491, 57-62.	2.8	28
162	Magnesium ion dynamics in Mg(BH ₄) _{2(1â^'x)} X _{2x} (X = Cl or) Tj ETQq0 0 0	rgBT /Ovei 1.7	rlock 10 Tf 5 28

1366-1370.

#	Article	IF	CITATIONS
163	Effect of mechanical grinding under Ar and H2 atmospheres on structural and hydriding properties in LaNi5. Journal of Alloys and Compounds, 2002, 330-332, 747-751.	2.8	27
164	Neutronics assessment of advanced shield materials using metal hydride and borohydride for fusion reactors. Fusion Engineering and Design, 2006, 81, 1285-1290.	1.0	27
165	Comparative study on the reversibility of pure metal borohydrides. Journal of Alloys and Compounds, 2013, 580, S292-S295.	2.8	27
166	Complex Hydride Solid Electrolytes of the Li(CB ₉ H ₁₀)–Li(CB ₁₁ H ₁₂) Quasi-Binary System: Relationship between the Solid Solution and Phase Transition, and the Electrochemical Properties. ACS Applied Energy Materials, 2020, 3, 4831-4839.	2.5	27
167	Neutron Holography Measurement Using Multi Array Detector. Japanese Journal of Applied Physics, 2008, 47, 2291.	0.8	26
168	Syntheses, crystal structures, and thermal analyses of solvent-free Ca(AlD4)2 and CaAlD5. Journal of Alloys and Compounds, 2009, 487, 472-478.	2.8	26
169	Metallic and complex hydride-based electrochemical storage of energy. Progress in Energy, 2022, 4, 032001.	4.6	26
170	Hydrogen intercalation in some superconducting copper oxides. Physica C: Superconductivity and Its Applications, 1989, 162-164, 65-66.	0.6	25
171	Synthesis of fine composite particles for hydrogen storage, starting from Mg-YNi2 mixture. Journal of Alloys and Compounds, 1994, 210, 37-43.	2.8	25
172	Formation of perovskite-type hydrides and thermal desorption processes in Ca–T–H (T=3d transition) Tj ETQ	q0.0.0 rgE 2.6	BT /Overlock I
173	Microstructural analyses of all-solid-state Li–S batteries using LiBH4-based solid electrolyte for prolonged cycle performance. Journal of Energy Chemistry, 2020, 50, 424-429.	7.1	25
174	New composite materials for hydrogen storage using magnesium as a binder. Journal of the Less Common Metals, 1991, 175, 243-257.	0.9	24
175	Enhanced tunability of thermodynamic stability of complex hydrides by the incorporation of Hâ $\epsilon^{\!$	1.5	24
176	Complex hydrides as thermal energy storage materials: characterisation and thermal decomposition of Na2Mg2NiH6. Journal of Materials Chemistry A, 2018, 6, 9099-9108.	5.2	24
177	Dehydriding and rehydriding properties of Mg(NH2)2–LiH systems. Journal of Alloys and Compounds, 2007, 446-447, 328-331.	2.8	23
178	Differential Scanning Calorimetry Measurements of Magnesium Borohydride Mg(BH ₄) ₂ . Materials Transactions, 2008, 49, 2751-2752.	0.4	23
179	Formation of an Fe–H complex anion in YFe ₂ : adjustment of imbalanced charge by using additional Li as an electron donor. RSC Advances, 2013, 3, 1013-1016.	1.7	23
180	Synthesis and crystal structure analysis of complex hydride Mg(BH4)(NH2). International Journal of Hydrogen Energy, 2013, 38, 6730-6735.	3.8	23

#	Article	IF	CITATIONS
181	Pseudo-ternary LiBH ₄ ·LiCl·P ₂ S ₅ system as structurally disordered bulk electrolyte for all-solid-state lithium batteries. Physical Chemistry Chemical Physics, 2020, 22, 13872-13879.	1.3	23
182	Hydrogen storage in complex hydrides: past activities and new trends. Progress in Energy, 2022, 4, 032009.	4.6	23
183	Hydriding properties of ordered-/disordered-Mg-based ternary Laves phase structures. Journal of Alloys and Compounds, 2003, 356-357, 429-432.	2.8	22
184	Size distribution of precipitated Ni clusters on the surface of an alkaline-treated LaNi5-based alloy. Acta Materialia, 2007, 55, 481-485.	3.8	22
185	First-principles studies of complex hydride YMn2H6 and its synthesis from metal hydride YMn2H4.5. Applied Physics Letters, 2011, 98, 221908.	1.5	22
186	Effect of Lithium Ion Conduction on Hydrogen Desorption of LiNH ₂ –LiH Solid Composite. ACS Catalysis, 2015, 5, 1552-1555.	5.5	22
187	Hydrogen Energy. ChemPhysChem, 2019, 20, 1157-1157.	1.0	22
188	Crystal Structural Investigations for Understanding the Hydrogen Storage Properties of YMgNi ₄ -Based Alloys. ACS Omega, 2020, 5, 31192-31198.	1.6	22
189	Investigations of interfacial materials design—the effect of interface microstructures in ZrCr1.8Cu0.3/Mg on MgH2 formation as a result of hydrogen interdiffusion. Journal of Alloys and Compounds, 1995, 231, 766-772.	2.8	21
190	Synthesis of LiNH2 films by vacuum evaporation. Journal of Alloys and Compounds, 2004, 377, L1-L3.	2.8	21
191	Nanostructure-induced hydrogenation of layered compound MgB2. Journal of Alloys and Compounds, 2010, 505, 654-656.	2.8	21
192	Improved Dehydrogenation and Rehydrogenation Properties of LiBH ₄ by Nanosized Ni Addition. Materials Transactions, 2014, 55, 1134-1137.	0.4	21
193	Synthesis and characterization of single phase LixBC (x=0.5 and 1.0), using Li hydride as a starting material. Journal of Alloys and Compounds, 2004, 370, L7-L9.	2.8	20
194	Direct Dry Syntheses and Thermal Analyses of a Series of Aluminum Complex Hydrides. Materials Transactions, 2009, 50, 182-186.	0.4	20
195	Anharmonicity in LiBH4–Lil induced by anion exchange and temperature. Applied Physics Letters, 2010, 97, 031916.	1.5	20
196	Synthesis and formation process of Al2CuH <i>x</i> : A new class of interstitial aluminum-based alloy hydride. APL Materials, 2013, 1, .	2.2	20
197	Synthesis of the binary intermetallic superconductor MgB2 under hydrogen pressure. Journal of Alloys and Compounds, 2002, 335, L21-L24.	2.8	19
198	Aging of Copper-Titanium Dilute Alloys in Hydrogen Atmosphere: Influence of Prior-Deformation on Strength and Electrical Conductivity. Materials Transactions, 2011, 52, 2137-2142.	0.4	19

#	Article	IF	CITATIONS
199	Nuclear Magnetic Resonance Study of Atomic Motion in the Mixed Borohydride–Amide Na ₂ (BH ₄)(NH ₂). Journal of Physical Chemistry C, 2014, 118, 14805-14812.	1.5	19
200	Complex transition metal hydrides incorporating ionic hydrogen: Synthesis and characterization of Na2Mg2FeH8 and Na2Mg2RuH8. Journal of Alloys and Compounds, 2015, 645, S347-S352.	2.8	19
201	Complex hydride for composite negative electrode—applicable to bulk-type all-solid-state Li-ion battery with wide temperature operation. Solid State Ionics, 2016, 285, 96-100.	1.3	19
202	Nuclear magnetic relaxation of 1H in high-Tc superconductor YBa2Cu3O6.9Hx (x = 0.18 and 0.63). Solid State Communications, 1989, 71, 291-295.	0.9	18
203	Effects of microwave irradiation on metal hydrides and complex hydrides. Journal of Alloys and Compounds, 2007, 446-447, 698-702.	2.8	18
204	Thermal properties of AlH3-etherate and its desolvation reaction into AlH3. Journal of Alloys and Compounds, 2007, 446-447, 276-279.	2.8	18
205	Density-functional study of perovskite-type hydride LiNiH <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>and its synthesis: Mechanism for formation of metallic perovskite. Physical Review B. 2013. 87</mml:math 	1.1	18
206	Raman and Infrared Spectroscopic Studies on Li ₄ RuH ₆ Combined with First-Principles Calculations. Materials Transactions, 2014, 55, 1117-1121.	0.4	18
207	Lithium ion conductivity of complex hydrides incorporating multiple closo‑type complex anions. Journal of Energy Chemistry, 2019, 38, 84-87.	7.1	18
208	Structural and hydriding properties of amorphous MgNi with interstitially dissolved carbon. Journal of Alloys and Compounds, 1998, 270, 160-163.	2.8	17
209	Hydriding properties of the heat-treated MgNi alloys with nanostructural designed multiphase. Journal of Alloys and Compounds, 1999, 293-295, 546-551.	2.8	17
210	Lithium ion conduction in lithium borohydrides under high pressure. Solid State Ionics, 2011, 192, 118-121.	1.3	16
211	Metallic Intermediate Hydride Phase of LaMg ₂ Ni with Ni–H Covalent Bonding: Precursor State for Complex Hydride Formation. Journal of Physical Chemistry C, 2016, 120, 5926-5931.	1.5	16
212	Li ₅ (BH ₄) ₃ NH: Lithium-Rich Mixed Anion Complex Hydride. Journal of Physical Chemistry C, 2017, 121, 11069-11075.	1.5	16
213	Comparative Molecular Dynamics Study of the Roles of Anion–Cation and Cation–Cation Correlation in Cation Diffusion in Li ₂ B ₁₂ H ₁₂ and LiCB ₁₁ H ₁₂ . Chemistry of Materials, 2021, 33, 2357-2369.	3.2	16
214	Influence of elemental diffusion on low temperature formation of MgH2 in TiMn1.3T0.2î—,Mg (T =) Tj ETQq0 0	0 rgβŢ /Ον 2.8	erlock 10 Tf 5
	Enhanced Electrical Conductivities of Complex Hydrides		

215	Li ₂ (BH ₄)(NH ₂) and Li ₄ (BH ₄)(NH ₂) ₃ 40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		15	
216	Biased interface between solid ion conductor LiBH4 and lithium metal: A first principles molecular dynamics study. Applied Physics Letters, 2013, 103	1.5	15	

dynamics study. Applied Physics Letters, 2013, 103, .

1.515

#	Article	IF	CITATIONS
217	Dehydriding Property of LiBH ₄ Combined with Mg ₂ FeH ₆ . Materials Transactions, 2013, 54, 1532-1534.	0.4	15
218	Fabrication of atomically abrupt interfaces of single-phase TiH2 and Al2O3. APL Materials, 2017, 5, .	2.2	15
219	Pseudorotating hydride complexes with high hydrogen coordination: A class of rotatable polyanions in solid matter, Applied Physics Letters, 2020, 116, . Reorientational motion and Ammimath	1.5	15
220	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow><mml:mi>Li</mml:mi>-ion transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:m mathvariant="normal">B<mml:mn>12</mml:mn></mml:m </mml:msub><mml:msub><mml:mi< td=""><td></td><td></td></mml:mi<></mml:msub></mml:mrow></mml:math </mml:mrow></mml:msup>		
221	mathvariant="normal">H <mml:mn>12</mml:mn> Formation mechanism of MgH2 at low temperatures in Ti0.6Zr0.4Mn0.8CrCu0.2-(Mg + Mg2Cu). Journal of Alloys and Compounds, 1995, 231, 689-695.	2.8	14
222	Electron microscopy of Mg2Ni-H alloy synthesized by reactive mechanical grinding. Intermetallics, 1997, 5, 97-101.	1.8	14
223	Structural observation of energy storage materials prepared by MA. Physica B: Condensed Matter, 2002, 311, 95-101.	1.3	14
224	Impregnation method for the synthesis of Li–N–H systems. Journal of Alloys and Compounds, 2008, 458, L1-L5.	2.8	14
225	Correlation between Structure of Titanium Additives and Dehydrogenation Reaction of Magnesium Borohydride Studied by Continuous Observation of X-Ray Absorption Spectroscopy. Materials Transactions, 2011, 52, 635-640.	0.4	14
226	Dehydrogenation properties and crystal structure analysis of Mg(BH4)(NH2). Journal of Alloys and Compounds, 2013, 580, S85-S89.	2.8	14
227	Simultaneous desorption behavior of M borohydrides and Mg2FeH6 reactive hydride composites (M =) Tj ETQq1	1 0.7843 1.5	14 rgBT /Over
228	The catalyzed hydrogen sorption mechanism in alkali alanates. Physical Chemistry Chemical Physics, 2015, 17, 20932-20940.	1.3	13
229	Complex transition metal hydrides incorporating ionic hydrogen: thermal decomposition pathway of Na ₂ Mg ₂ FeH ₈ and Na ₂ Mg ₂ RuH ₈ . Physical Chemistry Chemical Physics, 2015, 17, 8276-8282.	1.3	13
230	Isotopic Exchange in Porous and Dense Magnesium Borohydride. Angewandte Chemie - International Edition, 2015, 54, 10592-10595.	7.2	13
231	Imaging the hydrogenation of Mg thin films. International Journal of Hydrogen Energy, 2017, 42, 22411-22416.	3.8	13
232	In-situ powder neutron diffraction study on the formation process of LaMg 2 NiH 7. International Journal of Hydrogen Energy, 2017, 42, 22449-22453.	3.8	13
233	Development of 4V-Class Bulk-Type All-Solid-State Lithium Rechargeable Batteries by a Combined Use of Complex Hydride and Sulfide Electrolytes for Room Temperature Operation. Materials Transactions, 2017, 58, 1063-1068.	0.4	13
234	Small angle neutron scattering measurements of a nanostructured Mg2Niî—,D system. Physica B: Condensed Matter, 1996, 226, 370-374.	1.3	12

#	Article	IF	CITATIONS
235	MgB2/Fe superconducting tapes made using mechanically milled powders in Ar and H2 atmospheres. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1231-1237.	0.6	12
236	Nuclear-magnetic-resonance measurements of the hydrogen dynamics in nanocrystalline graphite. Journal of Applied Physics, 2005, 98, 044302.	1.1	12
237	Structural and Hydrogen Desorption Properties of Aluminum Hydride. Materials Transactions, 2011, 52, 598-601.	0.4	12
238	Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH. APL Materials, 2015, 3, .	2.2	12
239	Colossal barocaloric effects in the complex hydride Li\$\$_{2}\$\$B\$\$_{12}\$\$H\$\$_{12}\$\$. Scientific Reports, 2021, 11, 11915.	1.6	12
240	Low temperature formation of MgH2 in Ti0.6Zr0.4Mn0.8CrCu0.2/Mg. Journal of Alloys and Compounds, 1994, 203, 61-65.	2.8	11
241	Characterization of hydrogenated amorphous boron by a combination of infrared absorption spectroscopy and thermal analyses. Journal of Alloys and Compounds, 2003, 359, L1-L3.	2.8	11
242	A study of the mechanically milled h-BN-H system. Applied Physics A: Materials Science and Processing, 2004, 78, 1235-1239.	1.1	11
243	Order and disorder in lithium tetrahydroborate. Journal of Materials Science, 2011, 46, 566-569.	1.7	11
244	Effect of the structural evolution on the ionic conductivity of Li-N-H system during the dehydrogenation. Applied Physics Letters, 2016, 108, .	1.5	11
245	Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte. Journal of Power Sources, 2017, 359, 97-103.	4.0	11
246	Evidence of Intermediate Hydrogen States in the Formation of a Complex Hydride. Inorganic Chemistry, 2018, 57, 867-872.	1.9	11
247	Epitaxial Film Growth of LiBH ₄ via Molecular Unit Evaporation. ACS Applied Electronic Materials, 2019, 1, 1792-1796.	2.0	11
248	Superconductivity of lanthanum hydride synthesized using AlH ₃ as a hydrogen source. Superconductor Science and Technology, 2020, 33, 114004.	1.8	11
249	Theoretical investigation of Fe substitution for Mn in complex hydride YMn2H6. Applied Physics Letters, 2012, 100, 021908.	1.5	10
250	Unusual sevenfold coordination of Ru in complex hydride Na3RuH7: Prospect for formation of [FeH7]3– anion. Applied Physics Letters, 2013, 103, 113903.	1.5	10
251	First-Principles Prediction of Possible Synthesis of Li-Fe Based Complex Hydride Li4FeH6. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 604-608.	0.2	10
252	Epitaxial thin film growth of LiH using a liquid-Li atomic template. Applied Physics Letters, 2014, 105, .	1.5	10

#	Article	IF	CITATIONS
253	Dehydriding Property of NaBH ₄ Combined with Mg ₂ FeH ₆ . Materials Transactions, 2014, 55, 1141-1143.	0.4	10
254	Neutron holography and diffuse scattering of palladium hydride. Physical Review B, 2015, 91, .	1.1	10
255	Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations. Chemical Communications, 2016, 52, 11807-11810.	2.2	10
256	Hydrogen storage by earth-abundant metals, synthesis and characterization of Al3FeH3.9. Materials and Design, 2021, 208, 109953.	3.3	10
257	Notable Hydriding Properties and Their Origin in a Nanostructured Mg ₂ Ni-H System. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1996, 60, 685-692.	0.2	10
258	Formation process of the amorphous MgNi by mechanical alloying. Journal of Electron Microscopy, 1998, 47, 461-470.	0.9	9
259	Hydriding properties of nanostructured Mg–x at.%Ni (x = 33 âÂ^¼ 50) with a different amount of amorphous MgNi. International Journal of Hydrogen Energy, 1999, 24, 933-937.	3.8	9
260	Borohydrides as hydrogen storage materials. , 2008, , 420-449.		9
261	Stabilization of Superionic-Conducting High-Temperature Phase of Li(CB9H10) via Solid Solution Formation with Li2(B12H12). Crystals, 2021, 11, 330.	1.0	9
262	Hydrogenomics: Efficient and Selective Hydrogenation of Stable Molecules Utilizing Three Aspects of Hydrogen. Catalysis Letters, 2022, 152, 1583-1597.	1.4	9
263	Local structures and hydrogen dynamics in amorphous and nanostructured Mgî—,Niî—,H systems as studied by 1H and 2H nuclear magnetic resonance. Journal of Alloys and Compounds, 1997, 261, 145-149.	2.8	8
264	Hydrogen release from Li alanates originates in molecular lattice instability emerging at â^¼ 100 K. Applied Physics Letters, 2012, 100, .	1.5	8
265	Atomic Motion in the Complex Hydride Li ₃ (NH ₂) ₂ l: ⁷ Li and ¹ H Nuclear Magnetic Resonance Studies. Journal of Physical Chemistry C, 2015, 119, 13459-13464.	1.5	8
266	Synthesis of novel hydride Li 3 AlFeH 8 at high temperature and pressure. International Journal of Hydrogen Energy, 2017, 42, 22489-22495.	3.8	8
267	Vibrational Properties of CaAlH ₅ and α-AlH ₃ with Different AlH ₆ Networks Studied by Inelastic Neutron Scattering. Inorganic Chemistry, 2011, 50, 8007-8011.	1.9	7
268	Synthesis and Specific Heat of CaPdH3-δwith the Perovskite Structure. Journal of the Physical Society of Japan, 2012, 81, 034704.	0.7	7
269	Hexavalent hydrogen complex in hypothetical Y2CrH6. Journal of Alloys and Compounds, 2013, 580, S274-S277.	2.8	7
270	A hysteresis loop in electrical resistance of NbHx observed above the βâ~λ transition temperature. AlP Advances, 2019, 9, 015027.	0.6	7

#	Article	IF	CITATIONS
271	Lithium-ion diffusivity in complex hydrides: Pulsed-field-gradient NMR studies of LiLa(BH4)3Cl, Li3(NH2)2I and Li-1-CB9H10. Solid State Ionics, 2021, 362, 115585.	1.3	7

272 The Crystal Structures in Hydrogen Absorption Reactions of REMgNi4-Based Alloys (RE: Rare-Earth) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

273	Hydrogen-induced amorphization of YNi2 enhanced by mechanical grinding. Journal of Alloys and Compounds, 1997, 253-254, 110-113.	2.8	6
274	1H NMR and magnetization measurements of a nanostructured composite material of the Mg2Niî—,H system synthesized by reactive mechanical grinding. Journal of Alloys and Compounds, 1997, 256, 159-165.	2.8	6
275	Magnetic and Structural Phase Transitions in Ferromagnetic MnBi. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2009, 73, 40-45.	0.2	6
276	High pressure Raman and visible absorption study of AlH ₃ . Journal of Physics: Conference Series, 2010, 215, 012047.	0.3	6
277	Crystal structure change in the dehydrogenation process of the Li–Mg–N–H system. Journal of Alloys and Compounds, 2011, 509, 7553-7558.	2.8	6
278	Cyclic Hydrogenation and Dehydrogenation Property of LiNH ₂ Impregnated into Ni Foam. Materials Transactions, 2011, 52, 623-626.	0.4	6
279	Experimental studies of complex hydride YMn2H6 on formation kinetics and x-ray absorption fine structure analyses. Applied Physics Letters, 2012, 100, .	1.5	6
280	Local atomic structural investigations of precursory phenomenon of the hydrogen release from LiAlD4. Journal of Alloys and Compounds, 2014, 586, 244-247.	2.8	6
281	Dehydriding Process and Hydrogen–Deuterium Exchange of LiBH4–Mg2FeD6 Composites. Energies, 2015, 8, 5459-5466.	1.6	6
282	Crystal and Magnetic Structures of Double Hexagonal Close-Packed Iron Deuteride. Scientific Reports, 2020, 10, 9934.	1.6	6
283	Hydrogen Vibration in Hydrogen Storage Materials Investigated by Inelastic Neutron Scattering. Topics in Catalysis, 2021, 64, 614-621.	1.3	6
284	1H NMR study of hydrogenated YBa2Cu3O6.9 and Bi2Sr2CaCu2O8+δ. Physica C: Superconductivity and Its Applications, 1989, 159, 849-853.	0.6	5
285	Nanostructured graphite-hydrogen system prepared by mechanical milling under hydrogen and argon atmospheres. Metals and Materials International, 2000, 6, 601-603.	0.2	5
286	Nanostructured graphite-hydrogen systems prepared by mechanical milling method. Molecular Crystals and Liquid Crystals, 2002, 386, 173-178.	0.4	5
287	Electron microscopy and hydriding properties of MgYNi4 synthesized by mechanical alloying. Journal of Alloys and Compounds, 2002, 330-332, 292-295.	2.8	5
288	Microstructures of Graphite Mechanically Milled Under Hydrogen Gas or Argon Gas Atmosphere with Zirconia Balls or Chromium Steel Balls. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 113-120.	0.2	5

#	Article	IF	CITATIONS
289	Crystal Structure Analysis in the Dehydrogenation Process of Mg(NH2)2-LiH System. Materials Research Society Symposia Proceedings, 2006, 971, 1.	0.1	5
290	Reversible hydriding/dehydriding properties of new Y3Al2 hydrides. Journal of Alloys and Compounds, 2009, 471, L13-L15.	2.8	5
291	Chemical Bonding of AlH3 Hydride by Al-L2,3 Electron Energy-Loss Spectra and First-Principles Calculations. Materials, 2012, 5, 566-574.	1.3	5
292	Estimation of bonding nature using diamagnetic susceptibility. Chemical Communications, 2015, 51, 8691-8694.	2.2	5
293	Crystal Structural Determination of SrAID5 with Corner-Sharing AID6 Octahedron Chains by X-ray and Neutron Diffraction. Crystals, 2018, 8, 89.	1.0	5
294	Ionic conduction in Li3Na(NH2)4: Study of the material design for the enhancement of ion conductivity in double-cation complex hydrides. AIP Advances, 2019, 9, .	0.6	5
295	Hydrogenâ€Release Reaction of a Complex Transition Metal Hydride with Covalently Bound Hydrogen and Hydride Ions. ChemPhysChem, 2019, 20, 1392-1397.	1.0	5
296	Neutron diffraction study on the deuterium composition of nickel deuteride at high temperatures and high pressures. Physica B: Condensed Matter, 2020, 587, 412153.	1.3	5
297	Structural Change during Amorphization and Phase Separation Processes in the YNi ₂ -H System. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1996, 60, 16-21.	0.2	4
298	Hydrogen Effects on Synthesis Processes and Electrical Resistivities of LiBC. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 433-438.	0.2	4
299	Tailoring of Metal Borohydrides for Hydrogen Storage Applications. Materials Research Society Symposia Proceedings, 2006, 971, 1.	0.1	4
300	Synthesis and Decomposition of Pure Ca(AlH ₄) ₂ . Advanced Materials Research, 2007, 26-28, 869-872.	0.3	4
301	Synthesis and partial dehydrogenation of the impregnated lithium borohydride, LiBH4. Journal of the Ceramic Society of Japan, 2009, 117, 457-460.	0.5	4
302	Improvement Effects of TiCl3 on Dehydrogenation of Magnesium Borohydride Mg(BH4)2. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 627-630.	0.2	4
303	NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates. Zeitschrift Fur Physikalische Chemie, 2017, 231, .	1.4	4
304	Thermodynamic Properties and Reversible Hydrogenation of LiBH4–Mg2FeH6 Composite Materials. Inorganics, 2017, 5, 81.	1.2	4
305	Infrared Spectroscopic and Computational Studies on Li ₄ FeH ₆ with High Gravimetric Hydrogen Density. Materials Transactions, 2017, 58, 157-159.	0.4	4
306	Photo-crosslinked Polymer Electrolytes Containing Solvate Ionic Liquids: An Approach to Achieve Both Good Mechanical and Electrochemical Performances for Rechargeable Lithium Ion Batteries. Chemistry Letters, 2020, 49, 1465-1469.	0.7	4

#	Article	IF	CITATIONS
307	Generating Mechanism of Catalytic Effect for Hydrogen Absorption/Desorption Reactions in NaAlH4–TiCl3. Applied Sciences (Switzerland), 2021, 11, 8349.	1.3	4
308	Hydrogenation treatment under several gigapascals assists diffusionless transformation in a face-centered cubic steel. Scientific Reports, 2021, 11, 19384.	1.6	4
309	Development of New Composite Material for Hydrogen Storage Using Mg as a Binder. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1990, 54, 1154-1163.	0.2	4
310	In situ synchrotron radiation X-ray diffraction measurements of Fe–Mo alloy hydrides formed under high pressure and high temperature. Journal of Alloys and Compounds, 2022, 893, 162300.	2.8	4
311	æ—°ãŸā‡ãfžã,°ãfã,•ã,¦ãf系水ç´åŒ—ç‰©ã®æŽ¢ç´¢. Materia Japan, 2000, 39, 817-823.	0.1	3
312	Synthesis and Characterization of Impregnated Li-N-H Complex Hydride. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 163-167.	0.2	3
313	Multimode hydriding/dehydriding reactions of CaPd. Chemical Communications, 2010, 46, 8380.	2.2	3
314	Superconductivity in a new layered triangular-lattice system Li ₂ IrSi ₂ . New Journal of Physics, 2019, 21, 093056.	1.2	3
315	Nuclear magnetic resonance study of atomic motion in the mixed borohydride-amide Li2(BH4) (NH2). Journal of Alloys and Compounds, 2020, 823, 153821.	2.8	3
316	New Functionalities of Hydride Complexes with High Hydrogen Coordination. Journal of the Physical Society of Japan, 2020, 89, 051010.	0.7	3
317	Dehydriding Reaction of Hydrides Enhanced by Microwave Irradiation. Advances in Materials Research, 2008, , 157-166.	0.2	3
318	Effect of Mechanical Grinding under Argon and Hydrogen Atmospheres on Structural and Hydriding Properties of LaNi ₅ . Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 970-976.	0.2	3
319	Polarity reversal of the charge carrier in tetragonal TiHx(x=1.6â^2.0) at low temperatures. Physical Review Research, 2020, 2, .	1.3	3
320	Hydriding Properties of the MgNi-H(D) System with Amorphous Single Phase—Investigation from a Viewpoint of the Short Range Ordering—. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 959-964.	0.2	2
321	Recent Progresses on Complex- and Perovskite-Hydrides for Hydrogen Storage. Materials Research Society Symposia Proceedings, 2006, 927, 1.	0.1	2
322	Synchrotron radiation powder X-ray and neutron diffraction studies on novel Y3Al2 hydrides. Journal of Alloys and Compounds, 2009, 481, 254-257.	2.8	2
323	Multi-Phonon Excitations in Fe 2 <i>p</i> RIXS on Mg ₂ FeH ₆ . Journal of the Physical Society of Japan, 2015, 84, 043201.	0.7	2
324	Syntheses of Novel Metal Hydrides under High Pressure and High Temperature. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 298-305.	0.1	2

#	Article	IF	CITATIONS
325	Hydrogenation reaction of Co3Ti alloy under high pressure and high temperature. International Journal of Hydrogen Energy, 2020, 45, 33675-33680.	3.8	2
326	Pressure–Temperature Phase Diagram of Ta-H System up to 9 GPa and 600 °C. Applied Sciences (Switzerland), 2021, 11, 6719.	1.3	2
327	Erratum to â€~Hydriding properties of ordered-/disordered-Mg-based ternary Laves phase structures'. Journal of Alloys and Compounds, 2003, 361, 322.	2.8	1
328	Crystal Structure and Charge Density Analysis of Li2NH by Synchrotron X-Ray Diffraction ChemInform, 2005, 36, no.	0.1	1
329	Structural and Hydriding Properties of the Mg-Ni-H System with Nano- and/or Amorphous Structures. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 415-418.	0.1	1
330	Lithium colloids and color center creation in electron-irradiatedLi2NHobserved by electron-spin resonance. Physical Review B, 2006, 74, .	1.1	1
331	Synthesis and Structural Investigation of Netal Hydride, Y(Mn _{1-<i>x</i>} Fe _{<i>x</i>}) _{2(<i>x</i> a‰Ø.3, 4.0 a‰¤lt;i>y a‰¤4.5) and Complex Hydride, Y(Mn_{1-<i>x</i>}Fe_{<i>x</i>})_{2<td>0.4</td><td>1</td>}}	0.4	1
332	Key Engineering Materials, 0, 500, 310 314. Preface to the special issue on "The 15th International Symposium on Metal-Hydrogen Systems (MH2016), 7–12 August 2016, Interlaken, Switzerland― International Journal of Hydrogen Energy, 2017, 42, 22303-22304.	3.8	1
333	Complex Hydride as a Novel Solid Electrolyte and Its Application to an All-solid-state Battery. Materia Japan, 2017, 56, 448-452.	0.1	1
334	Hydriding-Dehydriding and Structural Properties of Composite Materials Produced by Disproportionation Reaction of Y ₅ Mg ₂₄ and Y ₅ Mg _{22.5} Ni _{1.5} with Hydrogen. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 1139-1146.	0.2	0
335	Hydriding Properties of Mg-based Ternary Laves Phase Alloys with Ordered and Disordered Structures. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 466-469.	0.2	0
336	Erratum to â€~NMR studies of hydrogen motion in nanostructured hydrogen–graphite systems'. Journal of Alloys and Compounds, 2003, 361, 324.	2.8	0
337	Synthesis and Characterization of Single Phase LixBC (x = 0.5 and 1.0), Using Li Hydride as a Starting Material ChemInform, 2004, 35, no.	0.1	0
338	Synthesis of LiNH2 Films by Vacuum Evaporation ChemInform, 2004, 35, no.	0.1	0
339	Preliminary study on mechanically milled hydrogenated nanostructured B4C. Journal of Alloys and Compounds, 2004, 363, L3-L6.	2.8	0
340	Influence of Atmosphere on the Synthesis of MgB2 Superconductor. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004, 68, 636-641.	0.2	0
341	Recent Advances in Lithium-Based Complex Hydrides for Solid-State Hydrogen Storage. Materials Science Forum, 2005, 475-479, 2431-2436.	0.3	0
342	Optical and transport properties of () films. Physica B: Condensed Matter, 2006, 378-380, 1138-1139.	1.3	0

#	Article	IF	CITATIONS
343	Milling and Additive Effects on Hydrogen Desorption Reactions of Li-N-H and Li-Mg-N-H Hydrogen Storage Systems. Materials Research Society Symposia Proceedings, 2006, 971, 1.	0.1	0
344	Specific heat of superstoichiometric samarium dihydride. Journal of Magnetism and Magnetic Materials, 2007, 310, e65-e67.	1.0	0
345	Characteristics of Chemical Bond in Perovskite-Type Hydrides. Advances in Quantum Chemistry, 2008, , 245-253.	0.4	0
346	Material Design of Hydrides for Energy-Related Applications. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2008, 18, 180-185.	0.1	0
347	Development of 4 V-Class Bulk-Type All-Solid-State Lithium Rechargeable Batteries by a Combined Use of Complex Hydride and Sulfide Electrolytes for Room Temperature Operation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 720-725.	0.2	0
348	Lithium Batteries: Carbon-Rich Active Materials with Macrocyclic Nanochannels for High-Capacity Negative Electrodes in All-Solid-State Lithium Rechargeable Batteries (Small 25/2016). Small, 2016, 12, 3472-3472.	5.2	0
349	R&D on Hydrides as Energy Materials. Materia Japan, 2017, 56, 130-134.	0.1	0
350	Synthesis of Super-functional Materials Using High Densification Ability. Materia Japan, 2021, 60, 152-155.	0.1	0
351	Nuclear Materials and Hydrogen (3) ; Hydrogen Energy Materials. Nippon Genshiryoku Gakkaishi/Journal of the Atomic Energy Society of Japan, 2005, 47, 15-24.	0.0	0
352	SINGLE- AND DOUBLE-CATIONS BOROHYDRIDES FOR HYDROGEN STORAGE APPLICATIONS. , 2009, , .		0
353	Hydrogen-Induced Amorphization of YNi ₂ Enhanced by Reactive Mechanical Grinding. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1996, 60, 1043-1050.	0.2	0
354	Mechanically Ground or Alloyed Mg-Ni Having High Hydrogen Capacities as well as Low Dehydriding Temperatures. Materia Japan, 1998, 37, 380-380.	0.1	0
355	High-Pressure and High-Temperature Synthesis of Novel Hydrides Based on First-Principles Prediction. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2018, 28, 291-298.	0.1	0