Hayley H Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414233/publications.pdf Version: 2024-02-01

HAVLEY H SHEN

#	Article	IF	CITATIONS
1	The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. Journal of Fluid Mechanics, 1990, 219, 81.	3.4	101
2	Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea. Journal of Geophysical Research: Oceans, 2016, 121, 7991-8007.	2.6	96
3	Overview of the Arctic Sea State and Boundary Layer Physics Program. Journal of Geophysical Research: Oceans, 2018, 123, 8674-8687.	2.6	96
4	Gravity waves propagating into an ice overed ocean: A viscoelastic model. Journal of Geophysical Research, 2010, 115, .	3.3	85
5	Emerging trends in the sea state of the Beaufort and Chukchi seas. Ocean Modelling, 2016, 105, 1-12.	2.4	78
6	Calibrating a Viscoelastic Sea Ice Model for Wave Propagation in the Arctic Fall Marginal Ice Zone. Journal of Geophysical Research: Oceans, 2017, 122, 8770-8793.	2.6	73
7	The role of floe collisions in sea ice rheology. Journal of Geophysical Research, 1987, 92, 7085-7096.	3.3	72
8	On applying granular flow theory to a deforming broken ice field. Acta Mechanica, 1986, 63, 143-160.	2.1	64
9	Simulation of pancake ice load on a circular cylinder in a wave and current field. Cold Regions Science and Technology, 2012, 78, 31-39.	3.5	60
10	Experimental study on surface wave propagating through a grease–pancake ice mixture. Cold Regions Science and Technology, 2010, 61, 90-96.	3.5	49
11	A Monte Carlo solution for rapidly shearing granular flows based on the kinetic theory of dense gases. Journal of Fluid Mechanics, 1992, 244, 477.	3.4	48
12	Dynamic transport of river ice. Journal of Hydraulic Research/De Recherches Hydrauliques, 1990, 28, 659-671.	1.7	47
13	Simulation of pancake-ice dynamics in a wave field. Annals of Glaciology, 2001, 33, 355-360.	1.4	44
14	Wave Attenuation by Sea Ice Turbulence. Geophysical Research Letters, 2019, 46, 6796-6803.	4.0	42
15	Internal parameters and regime map for soft polydispersed granular materials. Journal of Rheology, 2008, 52, 87-103.	2.6	41
16	Effect of Contact Force Models on Granular Flow Dynamics. Journal of Engineering Mechanics - ASCE, 2006, 132, 1252-1259.	2.9	37
17	Wave rafting and the equilibrium pancake ice cover thickness. Journal of Geophysical Research, 2004, 109, .	3.3	35
18	Internal length and time scales in a simple shear granular flow. Physical Review E, 2004, 70, 051308.	2.1	34

HAYLEY H SHEN

#	Article	IF	CITATIONS
19	Comparison of wave propagation through ice covers in calm and storm conditions. Geophysical Research Letters, 2015, 42, 5935-5941.	4.0	34
20	Wave propagation in frazil/pancake, pancake, and fragmented ice covers. Cold Regions Science and Technology, 2015, 113, 71-80.	3.5	32
21	Rollover of Apparent Wave Attenuation in Ice Covered Seas. Journal of Geophysical Research: Oceans, 2017, 122, 8557-8566.	2.6	31
22	A conceptual model for pancake-ice formation in a wave field. Annals of Glaciology, 2001, 33, 361-367.	1.4	30
23	Modeling ocean wave propagation under sea ice covers. Acta Mechanica Sinica/Lixue Xuebao, 2015, 31, 1-15.	3.4	29
24	An experimental study on the interactions between surface waves and floating viscoelastic covers. Wave Motion, 2017, 70, 195-208.	2.0	29
25	Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell. Mechanics of Materials, 2009, 41, 764-776.	3.2	28
26	Wind and wave influences on sea ice floe size and leads in the <scp>B</scp> eaufort and <scp>C</scp> hukchi <scp>S</scp> eas during the summerâ€fall transition 2014. Journal of Geophysical Research: Oceans, 2016, 121, 1502-1525.	2.6	27
27	Scale dependence of direct shear tests. Science Bulletin, 2009, 54, 4337-4348.	9.0	26
28	A one-dimensional model for wave-induced ice-floe collisions. Annals of Glaciology, 1991, 15, 87-95.	1.4	24
29	An experimental study on gravity waves through a floating viscoelastic cover. Cold Regions Science and Technology, 2018, 155, 289-299.	3.5	24
30	A continuum model for the linear wave propagation in ice-covered oceans: An approximate solution. Ocean Modelling, 2011, 38, 244-250.	2.4	23
31	Modelling ocean waves in ice-covered seas. Applied Ocean Research, 2019, 83, 30-36.	4.1	23
32	Wave-Ice Interactions in Barents Sea Marginal Ice Zone. Journal of Cold Regions Engineering - ASCE, 2001, 15, 91-102.	1.1	22
33	Limiting diameter of pancake ice. Journal of Geophysical Research, 2004, 109, .	3.3	22
34	Wave energy attenuation in fields of colliding ice floes – Part 2: AÂlaboratory case study. Cryosphere, 2019, 13, 2901-2914.	3.9	22
35	Wave energy attenuation in fields of colliding ice floes – Part 1: Discrete-element modelling of dissipation due to ice–water drag. Cryosphere, 2019, 13, 2887-2900.	3.9	21
36	A one-dimensional model for wave-induced ice-floe collisions. Annals of Glaciology, 1991, 15, 87-95.	1.4	20

HAYLEY H SHEN

#	Article	IF	CITATIONS
37	Three-layer viscoelastic model with eddy viscosity effect for flexural-gravity wave propagation through ice cover. Ocean Modelling, 2018, 131, 15-23.	2.4	18
38	Floe Size Effect on Gravity Wave Propagation Through Ice Covers. Journal of Geophysical Research: Oceans, 2019, 124, 320-334.	2.6	18
39	Ocean wave transmission and reflection between two connecting viscoelastic ice covers: An approximate solution. Ocean Modelling, 2013, 71, 102-113.	2.4	17
40	STRESSES IN A RAPID FLOW OF SPHERICAL SOLID WITH TWO SIZES. Particulate Science and Technology, 1984, 2, 37-56.	2.1	16
41	Nature of Wave Modes in a Coupled Viscoelastic Layer over Water. Journal of Engineering Mechanics - ASCE, 2017, 143, 04017114.	2.9	16
42	On the Ocean Wave Attenuation Rate in Greaseâ€Pancake Ice, a Comparison of Viscous Layer Propagation Models With Field Data. Journal of Geophysical Research: Oceans, 2018, 123, 5933-5948.	2.6	16
43	A diffusion approximation for ocean wave scatterings by randomly distributed ice floes. Ocean Modelling, 2016, 107, 21-27.	2.4	14
44	Effect of rolling friction on binary collisions of spheres. Physics of Fluids, 2010, 22, 033304.	4.0	12
45	Effect of particle size and boundary conditions on the shear stress in an annular shear cell. Granular Matter, 2012, 14, 423-431.	2.2	12
46	Wave Damping in Compact Pancake Ice Fields Due to Interactions Between Pancakes. Antarctic Research Series, 0, , 325-341.	0.2	11
47	Ocean wave transmission and reflection by viscoelastic ice covers. Ocean Modelling, 2015, 92, 1-10.	2.4	11
48	Sensitivity analysis of a viscoelastic parameterization for gravity wave dispersion in ice covered seas. Cold Regions Science and Technology, 2015, 120, 63-75.	3.5	11
49	Spectral attenuation of ocean waves in pack ice and its application in calibrating viscoelastic wave-in-ice models. Cryosphere, 2020, 14, 2053-2069.	3.9	8
50	STRESSES IN A RAPID, SIMPLE SHEAR FLOW OF GRANULAR MATERIALS WITH MULTIPLE GRAIN SIZES. Particulate Science and Technology, 1988, 6, 1-15.	2.1	7
51	Workshop on wave-ice interaction. Eos, 1992, 73, 375-375.	0.1	7
52	Comparison of ice and wind-wave modules in WAVEWATCH III® in the Barents Sea. Cold Regions Science and Technology, 2020, 172, 103008.	3.5	6
53	A COMPUTER SIMULATION OF PIPE BEND EROSION IN A DILUTE PNEUMATIC TRANSPORT OF GRANULAR MATERIALS. Particulate Science and Technology, 1996, 14, 59-73.	2.1	5
54	An experimental study of gravity waves through segmented floating viscoelastic covers. Applied Ocean Research, 2020, 101, 102233.	4.1	5

HAYLEY H SHEN

#	Article	IF	CITATIONS
55	A COMPUTER SIMULATION OF DILUTE PNEUMATIC CONVEYING OF GRANULAR MATERIALS IN PIPE BRANCHES. Particulate Science and Technology, 1996, 14, 213-219.	2.1	4
56	The Balance of Ice, Waves, and Winds in the Arctic Autumn. Eos, 2017, , .	0.1	4
57	Using the annular shear cell as a rheometer for rapidly sheared granular materials: a DEM study. Granular Matter, 2013, 15, 183-194.	2.2	3
58	On Developing a Continuum Model for Wave Propagation in Ice Covered Seas. , 2013, , .		3
59	Particle size and boundary geometry effects on the bulk friction coefficient of sheared granular materials in the inertial regime. Comptes Rendus - Mecanique, 2014, 342, 151-155.	2.1	2
60	Wave-influenced formation of new ice: Model building and a test case. Ocean Modelling, 2021, 167, 101878.	2.4	2
61	EM08 mini-symposium on granular materials—editorial: interconnecting engineering and physics perspectives. Granular Matter, 2010, 12, 143-144.	2.2	0
62	Rolling resistance effect for sheared granular materials in the inertial regime. , 2013, , .		0
63	Modeling and Observations of Wave Energy Attenuation in Fields of Colliding Ice Floes. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2022, , 167-182.	0.2	0
64	Wave-Ice Interaction Models and Experimental Observations. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2022, , 183-200.	0.2	0