Shuang-Ye Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4414215/publications.pdf

Version: 2024-02-01

		471509	552781
36	714	17	26
papers	citations	h-index	g-index
36	36	36	881
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Changing characteristics of precipitation in China during 1960–2012. International Journal of Climatology, 2016, 36, 1387-1402.	3.5	74
2	Recent greening (1981–2013) in the Mu Us dune field, northâ€central China, and its potential causes. Land Degradation and Development, 2018, 29, 1509-1520.	3.9	54
3	The transition of human subsistence strategies in relation to climate change during the Bronze Age in the West Liao River Basin, Northeast China. Holocene, 2016, 26, 781-789.	1.7	50
4	Temperature Trends in the Northwestern Tibetan Plateau Constrained by Ice Core Water Isotopes Over the Past 7,000 Years. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032560.	3.3	43
5	Potential impacts of sea-level rise on the Mid- and Upper-Atlantic Region of the United States. Climatic Change, 2009, 95, 121-138.	3.6	42
6	Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced From Ice Core Deuterium Excess Records. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,541.	3.3	39
7	Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere, 2018, 12, 2341-2348.	3.9	36
8	Daily precipitation isotope variation in Midwestern United States: Implication for hydroclimate and moisture source. Science of the Total Environment, 2020, 713, 136631.	8.0	31
9	Future changes in precipitation characteristics in China. International Journal of Climatology, 2019, 39, 3558-3573.	3.5	27
10	Changing characteristics of precipitation for the contiguous United States. Climatic Change, 2015, 132, 677-692.	3.6	24
11	Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records. Scientific Reports, 2016, 6, 32813.	3.3	23
12	Delayed warming hiatus over the Tibetan Plateau. Earth and Space Science, 2017, 4, 128-137.	2.6	23
13	Apparent discrepancy of Tibetan ice core & amp;lt;i>18O records may be attributed to misinterpretation of chronology. Cryosphere, 2019, 13, 1743-1752.	3.9	23
14	Variations of Stable Isotopic Composition in Atmospheric Water Vapor and their Controlling Factors—A 6‥ear Continuous Sampling Study in Nanjing, Eastern China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031697.	3.3	21
15	Future Changes in Mean and Extreme Monsoon Precipitation in the Middle and Lower Yangtze River Basin, China, in the CMIP5 Models. Journal of Hydrometeorology, 2016, 17, 2785-2797.	1.9	20
16	Influence of Summer Sublimation on \hat{I} D, \hat{I} (sup>180, and \hat{I} (sup>170 in Precipitation, East Antarctica, and Implications for Climate Reconstruction From Ice Cores. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7339-7358.	3.3	20
17	Climate, topography and anthropogenic effects on desert greening: A 40-year satellite monitoring in the Tengger desert, northern China. Catena, 2022, 209, 105851.	5.0	20
18	Normalized Difference Vegetation Indexâ€based assessment of climate change impact on vegetation growth in the humidâ€arid transition zone in northern China during 1982–2013. International Journal of Climatology, 2019, 39, 5583-5598.	3.5	19

#	Article	IF	Citations
19	A highâ€resolution atmospheric dust record for 1810–2004ÂA.D. derived from an ice core in eastern Tien Shan, central Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7505-7518.	3.3	15
20	Snow Accumulation Variability Over the West Antarctic Ice Sheet Since 1900: A Comparison of Ice Core Records With ERAâ€20C Reanalysis. Geophysical Research Letters, 2017, 44, 11,482.	4.0	14
21	Assessing groundwater sustainability under changing climate using isotopic tracers and climate modelling, southwest Ohio, USA. Hydrological Sciences Journal, 2019, 64, 798-807.	2.6	14
22	Assessment of heavy metal contamination in the atmospheric deposition during 1950–2016 A.D. from a snow pit at Dome A, East Antarctica. Environmental Pollution, 2021, 268, 115848.	7.5	14
23	Projecting Future Vegetation Change for Northeast China Using CMIP6 Model. Remote Sensing, 2021, 13, 3531.	4.0	11
24	Water vapor isotopes indicating rapid shift among multiple moisture sources for the 2018–2019 winter extreme precipitation events in southeastern China. Hydrology and Earth System Sciences, 2022, 26, 117-127.	4.9	9
25	The first detection of organophosphate esters (OPEs) of a high altitude fresh snowfall in the northeastern Tibetan Plateau. Science of the Total Environment, 2022, 838, 155615.	8.0	9
26	Potential impact of climate change on flooding in the Upper Great Miami River Watershed, Ohio, USA: a simulation-based approach. Hydrological Sciences Journal, 2010, 55, 1251-1263.	2.6	6
27	lce-core based assessment of nitrogen deposition in the central Tibetan Plateau over the last millennium. Science of the Total Environment, 2022, 814, 152692.	8.0	6
28	The shortest distance between two points isn't always a great circle: getting around landmasses in the calibration of marine geodisparity. Paleobiology, 2014, 40, 428-439.	2.0	5
29	The impact of geographic range, sampling, ecology, and time on extinction risk in the volatile clade Graptoloida. Paleobiology, 2017, 43, 85-113.	2.0	5
30	Spatiotemporal changes in frequency and intensity of high-temperature events in China during $1961 \hat{a} \in (2014. \text{ Journal of Chinese Geography}, 2017, 27, 1027-1043.$	3.9	5
31	The Dominant Role of Brewerâ€Dobson Circulation on ¹⁷ 0â€Excess Variations in Snow Pits at Dome A, Antarctica. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
32	An assessment of natural and anthropogenic trace elements in the atmospheric deposition during 1776–2004 A.D. using the Miaoergou ice core, eastern Tien Shan, China. Atmospheric Environment, 2020, 221, 117112.	4.1	2
33	Projecting Changes in Extreme Precipitation in the Midwestern United States Using North American Regional Climate Change Assessment Program (NARCCAP) Regional Climate Models., 0,,.		2
34	Temporal variations of the contribution of combustion-derived water vapor to urban humidity during winter in Xi'an, China. Science of the Total Environment, 2022, 830, 154711.	8.0	2
35	A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. Cryosphere, 2022, 16, 1997-2008.	3.9	2
36	Decadal Temperature Variations Over the Northwestern Tibetan Plateau Deduced From a 489‥ear Ice Core Stable Isotopic Record. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1