
Esteban Gabriel JobbÃ;gy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4413708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A regional PECS node built from place-based social-ecological sustainability research in Latin America and the Caribbean. Ecosystems and People, 2022, 18, 1-14.	3.2	1
2	Late Holocene environmental and hydro-climatic variability inferred from a shallow lake record, blowout dunes, Argentinian western Pampas, South America. Journal of South American Earth Sciences, 2022, 116, 103826.	1.4	3
3	Co-invading ectomycorrhizal fungal succession in pine-invaded mountain grasslands. Fungal Ecology, 2022, 60, 101176.	1.6	3
4	Sowing date, genotype choice, and water environment control soybean yields in central Argentina. Crop Science, 2021, 61, 715-728.	1.8	19
5	Plants versus streams: Their groundwaterâ€mediated competition at "El Morro,―a developing catchment in the dry plains of Argentina. Hydrological Processes, 2021, 35, e14188.	2.6	8
6	Modeling soil chemical changes induced by grassland afforestation in a sedimentary plain with shallow groundwater. Geoderma, 2021, 400, 115158.	5.1	2
7	Salt Accumulation and Redistribution in the Dry Plains of Southern South America: Lessons from Land Use Changes. , 2021, , 51-70.		5
8	Hydrological and productive impacts of recent landâ€use and landâ€cover changes in the semiarid Chaco: Understanding novel water excess in water scarce farmlands. Ecohydrology, 2020, 13, e2243.	2.4	11
9	Spatio-temporal soil drying in southeastern South America: the importance of effective sampling frequency and observational errors on drydown time scale estimates. International Journal of Remote Sensing, 2020, 41, 7958-7992.	2.9	9
10	Isotopic insights on continental water sources and transport in the mountains and plains of Southern South America. Isotopes in Environmental and Health Studies, 2020, 56, 586-605.	1.0	8
11	Changes in water fluxes partition related to the replacement of native dry forests by crops in the Dry Chaco. Journal of Arid Environments, 2020, 183, 104281.	2.4	11
12	Agricultural acceleration of soil carbonate weathering. Global Change Biology, 2020, 26, 5988-6002.	9.5	55
13	Stealth invasions on the rise: rapid long-distance establishment of exotic pines in mountain grasslands of Argentina. Biological Invasions, 2020, 22, 2989-3001.	2.4	6
14	Contrasting hydrological seasonality with latitude in the South American Chaco: The roles of climate and vegetation activity. Journal of Hydrology, 2020, 587, 124933.	5.4	14
15	Better estimates of soil carbon from geographical data: a revised global approach. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 355-372.	2.1	26
16	Subsurface accumulation of CaCO3 and Clâ^' from groundwater under black locust and poplar plantations. Journal of Forestry Research, 2019, 30, 1353-1361.	3.6	3
17	Long-lasting floods buffer the thermal regime of the Pampas. Theoretical and Applied Climatology, 2018, 131, 111-120.	2.8	14
18	Ideas and perspectives: Strengthening the biogeosciences in environmental research networks. Biogeosciences, 2018, 15, 4815-4832.	3.3	24

#	Article	IF	CITATIONS
19	Seasonal hydrologic buffer on continents: Patterns, drivers and ecological benefits. Advances in Water Resources, 2017, 102, 178-187.	3.8	15
20	On the Fundamental Causes of High Environmental Alkalinity (pHÂ≥Â9): An Assessment of Its Drivers and Global Distribution. Land Degradation and Development, 2017, 28, 1973-1981.	3.9	21
21	Litter is more effective than forest canopy reducing soil evaporation in Dry Chaco rangelands. Ecohydrology, 2017, 10, e1879.	2.4	35
22	Ecohydrological transformation in the Dry Chaco and the risk of dryland salinity: Following Australia's footsteps?. Ecohydrology, 2017, 10, e1822.	2.4	24
23	Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10572-10577.	7.1	635
24	Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agricultural and Forest Meteorology, 2017, 232, 118-127.	4.8	36
25	Soil Physical Changes After Conversion of Woodlands to Pastures in Dry Chaco Rangelands (Argentina). Rangeland Ecology and Management, 2017, 70, 225-229.	2.3	18
26	Forests and water in South America. Hydrological Processes, 2017, 31, 972-980.	2.6	37
27	Ecohydrology: Processes and Implications for Rangelands. Springer Series on Environmental Management, 2017, , 85-129.	0.3	17
28	Vegetation Productivity in Natural vs. Cultivated Systems along Water Availability Gradients in the Dry Subtropics. PLoS ONE, 2016, 11, e0168168.	2.5	4
29	Tradeâ€offs in water and carbon ecosystem services with landâ€use changes in grasslands. Ecological Applications, 2016, 26, 1633-1644.	3.8	35
30	Productive performance of alternative land covers along aridity gradients: Ecological, agronomic and economic perspectives. Agricultural Systems, 2016, 149, 20-29.	6.1	19
31	The ecohydrological imprint of deforestation in the semiarid Chaco: insights from the last forest remnants of a highly cultivated landscape. Hydrological Processes, 2016, 30, 2603-2616.	2.6	39
32	Vegetation composition and structure changes following roller-chopping deforestation in central Argentina woodlands. Journal of Arid Environments, 2016, 133, 19-24.	2.4	33
33	Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions. Plant and Soil, 2016, 409, 99-116.	3.7	27
34	Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Research, 2015, 184, 145-154.	5.1	144
35	Charcoal production in the Argentine Dry Chaco: Where, how and who?. Energy for Sustainable Development, 2015, 27, 46-53.	4.5	26
36	Pine afforestation changes more strongly community structure than ecosystem functioning in grassland mountain streams. Ecological Indicators, 2015, 57, 366-375.	6.3	17

#	Article	IF	CITATIONS
37	Rainwater harvesting in Dry Chaco: Regional distribution and local water balance. Journal of Arid Environments, 2015, 123, 93-102.	2.4	21
38	Cultivating the dry forests of South America: Diversity of land users and imprints on ecosystem functioning. Journal of Arid Environments, 2015, 123, 47-59.	2.4	31
39	Balancing agricultural and hydrologic risk in farming systems of the Chaco plains. Journal of Arid Environments, 2015, 123, 81-92.	2.4	18
40	Precipitation event distribution in Central Argentina: spatial and temporal patterns. Ecohydrology, 2015, 8, 94-104.	2.4	24
41	The imprint of crop choice on global nutrient needs. Environmental Research Letters, 2014, 9, 084014.	5.2	25
42	Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas. AoB PLANTS, 2014, 6, plu054-plu054.	2.3	20
43	Vegetation structure is as important as climate for explaining ecosystem function across <scp>P</scp> atagonian rangelands. Journal of Ecology, 2014, 102, 1419-1428.	4.0	87
44	Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. Forest Ecology and Management, 2014, 331, 71-78.	3.2	16
45	Livestock stations as foci of groundwater recharge and nitrate leaching in a sandy desert of the Central Monte, Argentina. Ecohydrology, 2014, 7, 600-611.	2.4	20
46	Soil volume and carbon storage shifts in drained and afforested wetlands of the Paraná River Delta. Biogeochemistry, 2013, 112, 359-372.	3.5	15
47	Salt leaching leads to drier soils in disturbed semiarid woodlands of central Argentina. Oecologia, 2013, 171, 1003-1012.	2.0	23
48	Radiation budget changes with dry forest clearing in temperate <scp>A</scp> rgentina. Global Change Biology, 2013, 19, 1211-1222.	9.5	42
49	The imprint of humans on landscape patterns and vegetation functioning in the dry subtropics. Global Change Biology, 2013, 19, 441-458.	9.5	21
50	Grassland afforestation impact on primary productivity: a remote sensing approach. Applied Vegetation Science, 2013, 16, 390-403.	1.9	21
51	Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecological Applications, 2012, 22, 76-86.	3.8	123
52	Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3135-3144.	4.0	471
53	Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Global Change Biology, 2012, 18, 3237-3251.	9.5	114
54	Assessing the potential of wildfires as a sustainable bioenergy opportunity. GCB Bioenergy, 2012, 4, 634-641.	5.6	16

#	Article	IF	CITATIONS
55	Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the Pampas (Argentina). Forest Ecology and Management, 2011, 262, 1766-1774.	3.2	43
56	Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biology, 2011, 17, 959-973.	9.5	208
57	Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. Journal of Hydrology, 2011, 397, 10-22.	5.4	70
58	Forage production in natural and afforested grasslands of the Pampas: ecological complementarity and management opportunities. Agroforestry Systems, 2011, 83, 201-211.	2.0	12
59	Surface and groundwater dynamics in the sedimentary plains of the Western Pampas (Argentina). Ecohydrology, 2011, 4, 433-447.	2.4	46
60	Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. , 2011, 21, 2367-2379.		47
61	Tree Plantation in South America and The Water Cycle: Impacts and Emergent Opportunities. , 2011, , 53-63.		5
62	Setâ€asides can be better climate investment than corn ethanol. Ecological Applications, 2009, 19, 277-282.	3.8	62
63	Ecohydrology in a humanâ€dominated landscape. Ecohydrology, 2009, 2, 383-389.	2.4	93
64	Land use change patterns in the RÃo de la Plata grasslands: The influence of phytogeographic and political boundaries. Agriculture, Ecosystems and Environment, 2009, 134, 287-292.	5.3	65
65	A global metaâ€analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications, 2009, 19, 2228-2241.	3.8	394
66	Forage Production of the Argentine Pampa Region Based on Land Use and Long-Term Normalized Difference Vegetation Index Data. Rangeland Ecology and Management, 2009, 62, 163-170.	2.3	5
67	Soil inorganic carbon storage pattern in China. Global Change Biology, 2008, 14, 2380-2387.	9.5	150
68	How do forage availability and climate control sheep reproductive performance?. Ecological Modelling, 2008, 217, 197-206.	2.5	8
69	Stream acidification and base cation losses with grassland afforestation. Water Resources Research, 2008, 44, .	4.2	41
70	Protecting climate with forests. Environmental Research Letters, 2008, 3, 044006.	5.2	313
71	Long-term Satellite NDVI Data Sets: Evaluating Their Ability to Detect Ecosystem Functional Changes in South America. Sensors, 2008, 8, 5397-5425.	3.8	86
72	Groundwater and soil chemical changes under phreatophytic tree plantations. Journal of Geophysical Research, 2007, 112, .	3.3	55

#	Article	IF	CITATIONS
73	The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia, 2007, 152, 695-705.	2.0	70
74	Carbon and Water Tradeoffs in Conversions to Forests and Shrublands. , 2007, , 237-246.		10
75	Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments, 2006, 67, 142-156.	2.4	173
76	Continental fire density patterns in South America. Global Ecology and Biogeography, 2006, 15, 192-199.	5.8	68
77	Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Global Change Biology, 2005, 11, 1101-1117.	9.5	186
78	Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology, 2005, 11, 1565-1576.	9.5	822
79	Poplar Afforestation Effects on Grassland Structure and Composition in the Flooding Pampas. Rangeland Ecology and Management, 2005, 58, 474-479.	2.3	23
80	Trading Water for Carbon with Biological Carbon Sequestration. Science, 2005, 310, 1944-1947.	12.6	1,014
81	From icy roads to salty streams. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14487-14488.	7.1	171
82	Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Water Resources Research, 2005, 41, .	4.2	141
83	Groundwater use and salinization with grassland afforestation. Global Change Biology, 2004, 10, 1299-1312.	9.5	188
84	Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia, 2004, 141, 620-628.	2.0	145
85	THE UPLIFT OF SOIL NUTRIENTS BY PLANTS: BIOGEOCHEMICAL CONSEQUENCES ACROSS SCALES. Ecology, 2004, 85, 2380-2389.	3.2	578
86	Two decades of Normalized Difference Vegetation Index changes in South America: identifying the imprint of global change. International Journal of Remote Sensing, 2004, 25, 2793-2806.	2.9	90
87	Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry, 2003, 64, 205-229.	3.5	162
88	Patterns and Controls of Primary Production in the Patagonian Steppe: A Remote Sensing Approach. Ecology, 2002, 83, 307.	3.2	11
89	PATTERNS AND CONTROLS OF PRIMARY PRODUCTION IN THE PATAGONIAN STEPPE: A REMOTE SENSING APPROACH*. Ecology, 2002, 83, 307-319.	3.2	198
90	Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 2002, 418, 623-626.	27.8	833

6

#	Article	IF	CITATIONS
91	Current Distribution of Ecosystem Functional Types in Temperate South America. Ecosystems, 2001, 4, 683-698.	3.4	135
92	The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry, 2001, 53, 51-77.	3.5	850
93	Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography, 2000, 9, 253-268.	5.8	192
94	THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION. , 2000, 10, 423-436.		3,759
95	CONTROLS OF GRASS AND SHRUB ABOVEGROUND PRODUCTION IN THE PATAGONIAN STEPPE. , 2000, 10, 541-549.		194
96	THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION. , 2000, 10, 423.		6
97	FUNCTIONAL AND STRUCTURAL CONVERGENCE OF TEMPERATE GRASSLAND AND SHRUBLAND ECOSYSTEMS. , 1998, 8, 194-206.		131
98	Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 1996, 108, 503-511.	2.0	282
99	Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia (Argentina). Journal of Vegetation Science, 1996, 7, 599-608.	2.2	68