Hiroyuki Nakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4413046/publications.pdf Version: 2024-02-01

ΗΙΡΟΥΠΚΙ ΝΑΚΑΙ

#	Article	IF	CITATIONS
1	Discovery of solabiose phosphorylase and its application for enzymatic synthesis of solabiose from sucrose and lactose. Scientific Reports, 2022, 12, 259.	3.3	2
2	Characterization and structural analyses of a novel glycosyltransferase acting on the β-1,2-glucosidic linkages. Journal of Biological Chemistry, 2022, 298, 101606.	3.4	5
3	Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing <i>Clostridioides difficile</i> . Gut Microbes, 2021, 13, 1973835.	9.8	18
4	Enzymatic control and evaluation of degrees of polymerization of β-(1→2)-glucans. Analytical Biochemistry, 2021, 632, 114366.	2.4	6
5	Structure of a bacterial α-1,2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. Journal of Biological Chemistry, 2021, 297, 101366.	3.4	7
6	Alkoxycarbonyl elimination of 3-O-substituted glucose and fructose by heat treatment under neutral pH. Carbohydrate Research, 2020, 496, 108129.	2.3	6
7	Large-scale preparation of β-1,2-glucan using quite a small amount of sophorose. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1867-1874.	1.3	9
8	Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family. Journal of Biological Chemistry, 2019, 294, 7942-7965.	3.4	18
9	Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua. Journal of Biological Chemistry, 2018, 293, 8812-8828.	3.4	19
10	Colorimetric determination of β-1,2-glucooligosaccharides for an enzymatic assay using 3-methyl-2-benzothiazolinonehydrazone. Analytical Biochemistry, 2018, 560, 1-6.	2.4	7
11	Characterization and Structural Analysis of a Novel <i>exo</i> -Type Enzyme Acting on β-1,2-Glucooligosaccharides from <i>Parabacteroides distasonis</i> . Biochemistry, 2018, 57, 3849-3860.	2.5	14
12	Synthesis of three deoxy-sophorose derivatives for evaluating the requirement of hydroxy groups at position 3 and/or 3' of sophorose by 1,2-β-oligoglucan phosphorylases. Carbohydrate Research, 2018, 468, 13-22.	2.3	4
13	[Review] Enzymatic Syntheses of Functional Oligosaccharides. Bulletin of Applied Glycoscience, 2018, 8, 51-55.	0.0	0
14	Biochemical and structural analyses of a bacterial endo-î²-1,2-glucanase reveal a new glycoside hydrolase family. Journal of Biological Chemistry, 2017, 292, 7487-7506.	3.4	42
15	Function and structure relationships of a βâ€1,2â€glucooligosaccharideâ€degrading βâ€glucosidase. FEBS Letters, 2017, 591, 3926-3936.	2.8	26
16	Functional and Structural Analysis of a β-Glucosidase Involved in β-1,2-Glucan Metabolism in Listeria innocua. PLoS ONE, 2016, 11, e0148870.	2.5	36
17	Novel splice site mutation in the fumarate hydratase (<i>FH</i>) gene is associated with multiple cutaneous leiomyomas in a Japanese patient. Journal of Dermatology, 2016, 43, 85-91.	1.2	5
18	Mutations in <i>SDR9C7</i> gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. Human Molecular Genetics, 2016, 25, ddw277.	2.9	40

Ηιγογικι Νακαι

#	Article	IF	CITATIONS
19	Characterization and crystal structure determination of βâ€1,2â€mannobiose phosphorylase from <i>Listeria innocua</i> . FEBS Letters, 2015, 589, 3816-3821.	2.8	17
20	Large-scale Preparation of 1,2-î²-Glucan Using 1,2-î²-Oligoglucan Phosphorylase. Journal of Applied Glycoscience (1999), 2015, 62, 47-52.	0.7	34
21	Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes. Journal of Biological Chemistry, 2015, 290, 18281-18292.	3.4	22
22	An inverting βâ€1,2â€mannosidase belonging to glycoside hydrolase family 130 from <i>Dyadobacter fermentans</i> . FEBS Letters, 2015, 589, 3604-3610.	2.8	9
23	[Review: Symposium on Applied Glycoscience] Discovery of Novel β-Mannoside Phosphorylases. Bulletin of Applied Glycoscience, 2015, 5, 120-127.	0.0	0
24	1,2-β-Oligoglucan Phosphorylase from Listeria innocua. PLoS ONE, 2014, 9, e92353.	2.5	42
25	One Pot Enzymatic Production of Nigerose from Common Sugar Resources Employing Nigerose Phosphorylase. Journal of Applied Glycoscience (1999), 2014, 61, 75-80.	0.7	25
26	Structural Basis for Reversible Phosphorolysis and Hydrolysis Reactions of 2-O-α-Glucosylglycerol Phosphorylase. Journal of Biological Chemistry, 2014, 289, 18067-18075.	3.4	14
27	Discovery of Two β-1,2-Mannoside Phosphorylases Showing Different Chain-Length Specificities from Thermoanaerobacter sp. X-514. PLoS ONE, 2014, 9, e114882.	2.5	28
28	[Review: Symposium on Applied Glycoscience] Discovery of Novel Phosphorylases Involved in Nigeran Metabolism from <i>Clostridium phytofermentans</i> . Bulletin of Applied Glycoscience, 2014, 4, 147-153.	0.0	0
29	Discovery of β-1,4-d-Mannosyl-N-acetyl-d-glucosamine Phosphorylase Involved in the Metabolism of N-Glycans. Journal of Biological Chemistry, 2013, 288, 27366-27374.	3.4	75
30	Colorimetric Quantification of α-D-Mannose 1-Phosphate. Journal of Applied Glycoscience (1999), 2013, 60, 137-139.	0.7	7