Hiroyuki Nakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4413046/publications.pdf

Version: 2024-02-01

623734 677142 30 537 14 22 citations g-index h-index papers 31 31 31 604 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of \hat{I}^2 -1,4-d-Mannosyl-N-acetyl-d-glucosamine Phosphorylase Involved in the Metabolism of N-Glycans. Journal of Biological Chemistry, 2013, 288, 27366-27374.	3.4	75
2	1,2-β-Oligoglucan Phosphorylase from Listeria innocua. PLoS ONE, 2014, 9, e92353.	2.5	42
3	Biochemical and structural analyses of a bacterial endo- $\hat{1}^2$ -1,2-glucanase reveal a new glycoside hydrolase family. Journal of Biological Chemistry, 2017, 292, 7487-7506.	3.4	42
4	Mutations in <i>SDR9C7</i> gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. Human Molecular Genetics, 2016, 25, ddw277.	2.9	40
5	Functional and Structural Analysis of a \hat{l}^2 -Glucosidase Involved in \hat{l}^2 -1,2-Glucan Metabolism in Listeria innocua. PLoS ONE, 2016, 11, e0148870.	2.5	36
6	Large-scale Preparation of $1,2-\hat{1}^2$ -Glucan Using $1,2-\hat{1}^2$ -Oligoglucan Phosphorylase. Journal of Applied Glycoscience (1999), 2015, 62, 47-52.	0.7	34
7	Discovery of Two \hat{I}^2 -1,2-Mannoside Phosphorylases Showing Different Chain-Length Specificities from Thermoanaerobacter sp. X-514. PLoS ONE, 2014, 9, e114882.	2.5	28
8	Function and structure relationships of a βâ€1,2â€glucooligosaccharideâ€degrading βâ€glucosidase. FEBS Letters, 2017, 591, 3926-3936.	2.8	26
9	One Pot Enzymatic Production of Nigerose from Common Sugar Resources Employing Nigerose Phosphorylase. Journal of Applied Glycoscience (1999), 2014, 61, 75-80.	0.7	25
10	Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes. Journal of Biological Chemistry, 2015, 290, 18281-18292.	3.4	22
11	Structural and thermodynamic insights into \hat{l}^2 -1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua. Journal of Biological Chemistry, 2018, 293, 8812-8828.	3.4	19
12	Identification, characterization, and structural analyses of a fungal endo-Î ² -1,2-glucanase reveal a new glycoside hydrolase family. Journal of Biological Chemistry, 2019, 294, 7942-7965.	3.4	18
13	Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing <i>Clostridioides difficile</i> . Gut Microbes, 2021, 13, 1973835.	9.8	18
14	Characterization and crystal structure determination of βâ€1,2â€mannobiose phosphorylase from <i>Listeria innocua</i> . FEBS Letters, 2015, 589, 3816-3821.	2.8	17
15	Structural Basis for Reversible Phosphorolysis and Hydrolysis Reactions of 2-O-α-Glucosylglycerol Phosphorylase. Journal of Biological Chemistry, 2014, 289, 18067-18075.	3.4	14
16	Characterization and Structural Analysis of a Novel $\langle i \rangle$ exo $\langle i \rangle$ -Type Enzyme Acting on \hat{l}^2 -1,2-Glucooligosaccharides from $\langle i \rangle$ Parabacteroides distasonis $\langle i \rangle$. Biochemistry, 2018, 57, 3849-3860.	2.5	14
17	An inverting βâ€1,2â€mannosidase belonging to glycoside hydrolase family 130 from <i>Dyadobacter fermentans</i> . FEBS Letters, 2015, 589, 3604-3610.	2.8	9
18	Large-scale preparation of \hat{l}^2 -1,2-glucan using quite a small amount of sophorose. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1867-1874.	1.3	9

#	Article	IF	CITATIONS
19	Colorimetric determination of \hat{l}^2 -1,2-glucooligosaccharides for an enzymatic assay using 3-methyl-2-benzothiazolinonehydrazone. Analytical Biochemistry, 2018, 560, 1-6.	2.4	7
20	Colorimetric Quantification of \hat{l}_{\pm} -D-Mannose 1-Phosphate. Journal of Applied Glycoscience (1999), 2013, 60, 137-139.	0.7	7
21	Structure of a bacterial $\hat{l}\pm 1,2$ -glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. Journal of Biological Chemistry, 2021, 297, 101366.	3.4	7
22	Alkoxycarbonyl elimination of 3-O-substituted glucose and fructose by heat treatment under neutral pH. Carbohydrate Research, 2020, 496, 108129.	2.3	6
23	Enzymatic control and evaluation of degrees of polymerization of \hat{l}^2 -(1â†'2)-glucans. Analytical Biochemistry, 2021, 632, 114366.	2.4	6
24	Novel splice site mutation in the fumarate hydratase (<i>FH</i>) gene is associated with multiple cutaneous leiomyomas in a Japanese patient. Journal of Dermatology, 2016, 43, 85-91.	1.2	5
25	Characterization and structural analyses of a novel glycosyltransferase acting on the \hat{l}^2 -1,2-glucosidic linkages. Journal of Biological Chemistry, 2022, 298, 101606.	3.4	5
26	Synthesis of three deoxy-sophorose derivatives for evaluating the requirement of hydroxy groups at position 3 and/or 3' of sophorose by 1,2-β-oligoglucan phosphorylases. Carbohydrate Research, 2018, 468, 13-22.	2.3	4
27	Discovery of solabiose phosphorylase and its application for enzymatic synthesis of solabiose from sucrose and lactose. Scientific Reports, 2022, 12, 259.	3.3	2
28	[Review: Symposium on Applied Glycoscience] Discovery of Novel Phosphorylases Involved in Nigeran Metabolism from <l>Clostridium phytofermentans. Bulletin of Applied Glycoscience, 2014, 4, 147-153.</l>	0.0	0
29	[Review: Symposium on Applied Glycoscience] Discovery of Novel \hat{l}^2 -Mannoside Phosphorylases. Bulletin of Applied Glycoscience, 2015, 5, 120-127.	0.0	0
30	[Review] Enzymatic Syntheses of Functional Oligosaccharides. Bulletin of Applied Glycoscience, 2018, 8, 51-55.	0.0	0