Chris G. Van de Walle

List of Publications by Citations

Source: https://exaly.com/author-pdf/4412690/chris-g-van-de-walle-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

108 51,985 528 219 h-index g-index citations papers 8.22 56,685 4.3 554 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
528	Fundamentals of zinc oxide as a semiconductor. <i>Reports on Progress in Physics</i> , 2009 , 72, 126501	14.4	2712
527	First-principles calculations for defects and impurities: Applications to III-nitrides. <i>Journal of Applied Physics</i> , 2004 , 95, 3851-3879	2.5	2330
526	Hydrogen as a cause of doping in zinc oxide. <i>Physical Review Letters</i> , 2000 , 85, 1012-5	7.4	1890
525	Native point defects in ZnO. <i>Physical Review B</i> , 2007 , 76,	3.3	1820
524	Band lineups and deformation potentials in the model-solid theory. <i>Physical Review B</i> , 1989 , 39, 1871-1	8 §.3	1755
523	First-principles study of native point defects in ZnO. <i>Physical Review B</i> , 2000 , 61, 15019-15027	3.3	1454
522	First-principles calculations for point defects in solids. <i>Reviews of Modern Physics</i> , 2014 , 86, 253-305	40.5	1431
521	Theoretical calculations of heterojunction discontinuities in the Si/Ge system. <i>Physical Review B</i> , 1986 , 34, 5621-5634	3.3	1192
520	Universal alignment of hydrogen levels in semiconductors, insulators and solutions. <i>Nature</i> , 2003 , 423, 626-8	50.4	1003
519	Gallium vacancies and the yellow luminescence in GaN. Applied Physics Letters, 1996, 69, 503-505	3.4	963
518	Oxygen vacancies in ZnO. <i>Applied Physics Letters</i> , 2005 , 87, 122102	3.4	887
517	Fully ab initio finite-size corrections for charged-defect supercell calculations. <i>Physical Review Letters</i> , 2009 , 102, 016402	7.4	845
516	Atomic geometry and electronic structure of native defects in GaN. <i>Physical Review B</i> , 1994 , 50, 8067-80	03.8	692
515	Hydrogen multicentre bonds. <i>Nature Materials</i> , 2007 , 6, 44-7	27	600
514	Oxygen vacancies and donor impurities in EGa2O3. Applied Physics Letters, 2010, 97, 142106	3.4	581
513	Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation. <i>Physical Review B</i> , 1999 , 59, 5521-5535	3.3	564
512	Theoretical study of band offsets at semiconductor interfaces. <i>Physical Review B</i> , 1987 , 35, 8154-8165	3.3	533

511	Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. <i>Advanced Electronic Materials</i> , 2018 , 4, 1600501	6.4	520
510	Hybrid functional studies of the oxygen vacancy in TiO2. <i>Physical Review B</i> , 2010 , 81,	3.3	486
509	Theory of hydrogen diffusion and reactions in crystalline silicon. <i>Physical Review B</i> , 1989 , 39, 10791-108	80\$3	458
508	Carbon impurities and the yellow luminescence in GaN. Applied Physics Letters, 2010 , 97, 152108	3.4	456
507	Quantum computing with defects. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 8513-8	11.5	453
506	Hydrogen in GaN: Novel aspects of a common impurity. <i>Physical Review Letters</i> , 1995 , 75, 4452-4455	7.4	390
505	Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. <i>Applied Physics Letters</i> , 2011 , 98, 161107	3.4	388
504	Heterojunction band offset engineering. Surface Science Reports, 1996 , 25, 1-140	12.9	370
503	Effects of strain on band structure and effective masses in MoS2. Physical Review B, 2012, 86,	3.3	353
502	Why nitrogen cannot lead to p-type conductivity in ZnO. <i>Applied Physics Letters</i> , 2009 , 95, 252105	3.4	339
501	Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. <i>Physical Review B</i> , 2012 , 85,	3.3	328
500	Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. <i>Physical Review B</i> , 2002 , 66,	3.3	311
499	Electrostatic interactions between charged defects in supercells. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 1067-1076	1.3	309
498	Sources of electrical conductivity in SnO2. <i>Physical Review Letters</i> , 2008 , 101, 055502	7.4	309
497	Effects of cation d states on the structural and electronic properties of III-nitride and II-oxide wide-band-gap semiconductors. <i>Physical Review B</i> , 2006 , 74,	3.3	301
496	Direct view at excess electrons in TiO2 rutile and anatase. <i>Physical Review Letters</i> , 2014 , 113, 086402	7.4	300
495	Auger recombination rates in nitrides from first principles. <i>Applied Physics Letters</i> , 2009 , 94, 191109	3.4	297
494	Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. <i>Physical Review B</i> , 2014 , 89,	3.3	290

493	New insights into the role of native point defects in ZnO. Journal of Crystal Growth, 2006, 287, 58-65	1.6	290
492	Band bowing and band alignment in InGaN alloys. <i>Applied Physics Letters</i> , 2010 , 96, 021908	3.4	288
491	Energies of various configurations of hydrogen in silicon. <i>Physical Review B</i> , 1994 , 49, 4579-4585	3.3	285
490	Role of hydrogen in doping of GaN. <i>Applied Physics Letters</i> , 1996 , 68, 1829-1831	3.4	278
489	Energetics and electronic structure of stacking faults in AlN, GaN, and InN. <i>Physical Review B</i> , 1998 , 57, R15052-R15055	3.3	273
488	First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. <i>Physical Review B</i> , 1993 , 47, 9425-9434	3.3	261
487	Native defects and self-compensation in ZnSe. <i>Physical Review B</i> , 1992 , 45, 10965-10978	3.3	253
486	Electronic structure and phase stability of GaAs1-xNx alloys. <i>Physical Review B</i> , 1995 , 51, 10568-10571	3.3	251
485	High-voltage field effect transistors with wide-bandgap EGa2O3 nanomembranes. <i>Applied Physics Letters</i> , 2014 , 104, 203111	3.4	242
484	Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. <i>Journal of Chemical Physics</i> , 2011 , 134, 084703	3.9	228
483	Diffusivity of native defects in GaN. <i>Physical Review B</i> , 2004 , 69,	3.3	226
482	Theory of hydrogen diffusion and reactions in crystalline silicon. <i>Physical Review Letters</i> , 1988 , 60, 2761	- 2 7464	220
481	Defect analysis and engineering in ZnO. <i>Physica B: Condensed Matter</i> , 2001 , 308-310, 899-903	2.8	218
480	Microscopic origins of surface states on nitride surfacesa). <i>Journal of Applied Physics</i> , 2007 , 101, 081704	1 2.5	217
479	First-principles surface phase diagram for hydrogen on GaN surfaces. <i>Physical Review Letters</i> , 2002 , 88, 066103	7.4	216
478	Experimental electronic structure of In2O3and Ga2O3. New Journal of Physics, 2011, 13, 085014	2.9	213
477	Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition. <i>Journal of Applied Physics</i> , 2000 , 87, 7745-7752	2.5	211
476	Interactions of hydrogen with native defects in GaN. <i>Physical Review B</i> , 1997 , 56, R10020-R10023	3.3	210

475	First-principles calculations of hyperfine parameters. <i>Physical Review B</i> , 1993 , 47, 4244-4255	3.3	208
474	Shallow versus deep nature of Mg acceptors in nitride semiconductors. <i>Physical Review Letters</i> , 2012 , 108, 156403	7.4	207
473	Tutorial: Defects in semiconductors Combining experiment and theory. <i>Journal of Applied Physics</i> , 2016 , 119, 181101	2.5	206
472	Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial. <i>Physical Review Letters</i> , 2009 , 102, 026402	7.4	196
471	Theoretical investigation of native defects, impurities, and complexes in aluminum nitride. <i>Physical Review B</i> , 2002 , 65,	3.3	196
470	Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials. <i>Physical Review B</i> , 2000 , 61, R7846-R78	34 ³ 3	196
469	Electrostatic carrier doping of GdTiO3/SrTiO3 interfaces. <i>Applied Physics Letters</i> , 2011 , 99, 232116	3.4	195
468	Optical characterization and band offsets in ZnSe-ZnSxSe. <i>Physical Review B</i> , 1988 , 38, 1417-1426	3.3	188
467	Large band gap bowing of InxGa1⊠N alloys. <i>Applied Physics Letters</i> , 1998 , 72, 2725-2726	3.4	187
466	Hydrogenated cation vacancies in semiconducting oxides. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 334212	1.8	186
465	Theoretical study of Si/Ge interfaces. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1985 , 3, 1256		177
464	Brillouin zone and band structure of EGa2O3. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 828-83.	21.3	176
463	Theory of doping and defects in IIIN nitrides. <i>Journal of Crystal Growth</i> , 1998 , 189-190, 505-510	1.6	175
462	Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces. <i>Europhysics Letters</i> , 2006 , 76, 305-311	1.6	169
461	First-principles theory of nonradiative carrier capture via multiphonon emission. <i>Physical Review B</i> , 2014 , 90,	3.3	168
460	Native point defects and dangling bonds in EAl2O3. <i>Journal of Applied Physics</i> , 2013 , 113, 044501	2.5	165
459	Vacancies and small polarons in SrTiO3. <i>Physical Review B</i> , 2014 , 90,	3.3	156
458	Electronic properties of the (100) (Si)/(Ge) strained-layer superlattices. <i>Physical Review B</i> , 1988 , 38, 132	3 7 . ₃ 132	2 45 55

457	"Absolute" deformation potentials: Formulation and ab initio calculations for semiconductors. <i>Physical Review Letters</i> , 1989 , 62, 2028-2031	7.4	152
456	Theoretical calculations of semiconductor heterojunction discontinuities. <i>Journal of Vacuum Science</i> & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1986 , 4, 1055		152
455	Energy levels of isolated interstitial hydrogen in silicon. <i>Physical Review B</i> , 2001 , 64,	3.3	151
454	Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells. <i>Applied Physics Letters</i> , 2012 , 100, 201108	3.4	148
453	Hydrogen doping in indium oxide: An ab initio study. <i>Physical Review B</i> , 2009 , 80,	3.3	148
452	Mechanism of visible-light photocatalysis in nitrogen-doped TiO\(\textit{I}\)Advanced Materials, 2011 , 23, 2343-7	24	146
45 ¹	Microscopic structure of the hydrogen-boron complex in crystalline silicon. <i>Physical Review B</i> , 1989 , 39, 10809-10824	3.3	142
45 ⁰	Computationally predicted energies and properties of defects in GaN. <i>Npj Computational Materials</i> , 2017 , 3,	10.9	141
449	Oxide interfaces for novel electronic applications. New Journal of Physics, 2014, 16, 025005	2.9	141
448	Metastability of Oxygen Donors in AlGaN. <i>Physical Review Letters</i> , 1998 , 80, 4008-4011	7.4	138
447	Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. <i>Applied Physics Letters</i> , 2012 , 101, 231107	3.4	137
446	Mechanisms of dopant impurity diffusion in silicon. <i>Physical Review B</i> , 1989 , 40, 5484-5496	3.3	137
445	Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. Journal of Applied Physics, 2011 , 109, 033715	2.5	135
444	Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates. <i>Applied Physics Letters</i> , 2010 , 96, 152908	3.4	134
443	Hydrogen passivation effect in nitrogen-doped ZnO thin films. <i>Applied Physics Letters</i> , 2005 , 86, 122107	3.4	134
442	Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN. <i>Applied Physics Letters</i> , 2009 , 95, 121111	3.4	132
441	Native point defects and impurities in hexagonal boron nitride. <i>Physical Review B</i> , 2018 , 97,	3.3	131
440	First-principles optical spectra for F centers in MgO. <i>Physical Review Letters</i> , 2012 , 108, 126404	7.4	131

(2012-2012)

439	First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO. <i>Physical Review Letters</i> , 2012 , 109, 267401	7.4	131
438	DX-center formation in wurtzite and zinc-blende AlxGa1N. <i>Physical Review B</i> , 1998 , 57, R2033-R2036	3.3	131
437	Tin dioxide from first principles: Quasiparticle electronic states and optical properties. <i>Physical Review B</i> , 2011 , 83,	3.3	129
436	Doping of AlxGa1⊠N. <i>Applied Physics Letters</i> , 1998 , 72, 459-461	3.4	129
435	Structural and electronic properties of Ga2O3-Al2O3 alloys. <i>Applied Physics Letters</i> , 2018 , 112, 242101	3.4	127
434	The electronic structure of EGa2O3. <i>Applied Physics Letters</i> , 2010 , 97, 211903	3.4	127
433	HYDROGEN IN SEMICONDUCTORS. Annual Review of Materials Research, 2006, 36, 179-198	12.8	127
432	Dual behavior of excess electrons in rutile TiO2. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 199-203	2.5	126
431	Polarization-driven topological insulator transition in a GaN/InN/GaN quantum well. <i>Physical Review Letters</i> , 2012 , 109, 186803	7.4	124
430	First-principles studies of beryllium doping of GaN. <i>Physical Review B</i> , 2001 , 63,	3.3	124
429	Small valence-band offsets at GaN/InGaN heterojunctions. <i>Applied Physics Letters</i> , 1997 , 70, 2577-2579	3.4	122
428	First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. <i>New Journal of Physics</i> , 2014 , 16, 073026	2.9	121
427	Absolute deformation potentials and band alignment of wurtzite ZnO, MgO, and CdO. <i>Physical Review B</i> , 2007 , 75,	3.3	121
426	Role of native defects in wide-band-gap semiconductors. <i>Physical Review Letters</i> , 1991 , 66, 648-651	7.4	120
425	Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K. <i>Physical Review X</i> , 2012 , 2,	9.1	117
424	Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films. <i>Scientific Reports</i> , 2015 , 5, 16996	4.9	114
423	Nature and evolution of the band-edge states in MoS2: From monolayer to bulk. <i>Physical Review B</i> , 2014 , 90,	3.3	110
422	Phonon-assisted optical absorption in silicon from first principles. <i>Physical Review Letters</i> , 2012 , 108, 167402	7.4	110

421	Dangling-bond defects and hydrogen passivation in germanium. <i>Applied Physics Letters</i> , 2007 , 91, 142	103.4	110
420	Role of nitrogen vacancies in the luminescence of Mg-doped GaN. <i>Applied Physics Letters</i> , 2012 , 100, 142110	3.4	107
419	Structure and properties of hydrogen-impurity pairs in elemental semiconductors. <i>Physical Review Letters</i> , 1989 , 62, 1884-1887	7.4	103
418	Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy. <i>Applied Physics Letters</i> , 2002 , 81, 490-492	3.4	102
417	LDA + U and hybrid functional calculations for defects in ZnO, SnO2, and TiO2. <i>Physica Status Solidi</i> (B): Basic Research, 2011 , 248, 799-804	1.3	100
416	Energetics and Vibrational Frequencies of Interstitial H2 Molecules in Semiconductors. <i>Physical Review Letters</i> , 1998 , 80, 2177-2180	7.4	100
415	Hybrid functional calculations of DX centers in AlN and GaN. <i>Physical Review B</i> , 2014 , 89,	3.3	97
414	Free-carrier absorption in nitrides from first principles. <i>Physical Review B</i> , 2010 , 81,	3.3	97
413	Inverted order of acceptor and donor levels of monatomic hydrogen in silicon. <i>Physical Review Letters</i> , 1994 , 73, 130-133	7.4	97
412	Fluorine-silicon reactions and the etching of crystalline silicon. <i>Physical Review Letters</i> , 1988 , 61, 1867-	18 7 .0	96
411	Origins of optical absorption and emission lines in AlN. <i>Applied Physics Letters</i> , 2014 , 105, 111104	3.4	94
410	Clean and As-Covered Zinc-Blende GaN (001) Surfaces: Novel Surface Structures and Surfactant Behavior. <i>Physical Review Letters</i> , 1998 , 80, 3097-3100	7.4	92
409	First-principles theory of acceptors in nitride semiconductors. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 900-908	1.3	90
408	Effects of doping on the lattice parameter of SrTiO3. <i>Applied Physics Letters</i> , 2012 , 100, 262104	3.4	90
407	First-principles investigation of visible light emission from silicon-based materials. <i>Physical Review Letters</i> , 1993 , 70, 1116-1119	7.4	88
406	Mechanisms of equilibrium and nonequilibrium diffusion of dopants in silicon. <i>Physical Review Letters</i> , 1989 , 62, 1049-1052	7.4	88
405	Effects of hydrogen on the electronic properties of dilute GaAsN alloys. Physical Review Letters,	7.4	87
	2002 , 89, 086403	7.4	- /

403	Acceptor doping in ZnSe versus ZnTe. Applied Physics Letters, 1993, 63, 1375-1377	3.4	86
402	Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices. <i>New Journal of Physics</i> , 2013 , 15, 125006	2.9	85
401	Role of charged defects and impurities in kinetics of hydrogen storage materials: A first-principles study. <i>Physical Review B</i> , 2007 , 76,	3.3	85
400	Deep acceptors and their diffusion in Ga2O3. APL Materials, 2019, 7, 022519	5.7	84
399	Impact of carbon and nitrogen impurities in high-l'dielectrics on metal-oxide-semiconductor devices. <i>Applied Physics Letters</i> , 2013 , 102, 142902	3.4	84
398	Strategies for Controlling the Conductivity of Wide-Band-Gap Semiconductors. <i>Physica Status Solidi</i> (B): Basic Research, 2002 , 229, 221-228	1.3	84
397	Chemical trends for acceptor impurities in GaN. <i>Journal of Applied Physics</i> , 1999 , 85, 3003-3005	2.5	84
396	Surface reconstructions on InN and GaN polar and nonpolar surfaces. Surface Science, 2007, 601, L15-L	18 ∡.8	83
395	Interactions between nitrogen, hydrogen, and gallium vacancies in GaAs1Nx alloys. <i>Physical Review B</i> , 2003 , 67,	3.3	83
394	Shallow donor state of hydrogen in indium nitride. <i>Applied Physics Letters</i> , 2003 , 82, 592-594	3.4	83
393	Comment on R eduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing[[Appl. Phys. Lett. 68, 2526 (1996)]. <i>Applied Physics Letters</i> , 1996 , 69, 2441-2441	3.4	83
392	Fundamental limits on the electron mobility of EGaO. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 234001	1.8	81
391	Oxidation and the origin of the two-dimensional electron gas in AlGaN/GaN heterostructures. Journal of Applied Physics, 2010 , 107, 123713	2.5	81
390	Controlling the density of the two-dimensional electron gas at the SrTiO3/LaAlO3 interface. <i>Physical Review B</i> , 2012 , 86,	3.3	81
389	Causes of incorrect carrier-type identification in van der PauwHall measurements. <i>Applied Physics Letters</i> , 2008 , 93, 242108	3.4	81
388	Microscopic structure of the hydrogen-phosphorus complex in crystalline silicon. <i>Physical Review B</i> , 1990 , 41, 3885-3888	3.3	81
387	Ambipolar doping in SnO. <i>Applied Physics Letters</i> , 2013 , 103, 082118	3.4	80
386	Sources of unintentional conductivity in InN. <i>Applied Physics Letters</i> , 2008 , 92, 032104	3.4	80

385	Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2. <i>Applied Physics Letters</i> , 2012 , 100, 011914	3.4	78
384	Reconstructions and origin of surface states on AlN polar and nonpolar surfaces. <i>Physical Review B</i> , 2009 , 80,	3.3	78
383	First-principles calculations of diffusion coefficients: Hydrogen in silicon. <i>Physical Review Letters</i> , 1990 , 64, 1401-1404	7.4	78
382	Role of Si and Ge as impurities in ZnO. <i>Physical Review B</i> , 2009 , 80,	3.3	77
381	Absolute surface energies of polar and nonpolar planes of GaN. <i>Physical Review B</i> , 2014 , 89,	3.3	76
380	Tuning bad metal and non-Fermi liquid behavior in a Mott material: Rare-earth nickelate thin films. <i>Science Advances</i> , 2015 , 1, e1500797	14.3	76
379	The role of oxygen-related defects and hydrogen impurities in HfO2 and ZrO2. <i>Microelectronic Engineering</i> , 2011 , 88, 1452-1456	2.5	76
378	Magnesium incorporation in GaN grown by molecular-beam epitaxy. <i>Applied Physics Letters</i> , 2001 , 78, 285-287	3.4	76
377	Effects of impurities on the lattice parameters of GaN. <i>Physical Review B</i> , 2003 , 68,	3.3	74
376	Effects of strain on the band structure of group-III nitrides. <i>Physical Review B</i> , 2014 , 90,	3.3	73
375	Strain effects on the electronic structure of SrTiO3: Toward high electron mobilities. <i>Physical Review B</i> , 2011 , 84,	3.3	72
374	Atomic arrangement at the AlN/SiC interface. <i>Physical Review B</i> , 1996 , 53, 7473-7478	3.3	7 ²
373	Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. <i>Applied Physics Letters</i> , 2016 , 108, 141101	3.4	72
372	Effects of an Electrically Conducting Layer at the Zinc Oxide Surface. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 7271-7274	1.4	69
371	(InxGa1☑)2O3 alloys for transparent electronics. <i>Physical Review B</i> , 2015 , 92,	3.3	68
370	First-principles characterization of native-defect-related optical transitions in ZnO. <i>Journal of Applied Physics</i> , 2017 , 122, 035704	2.5	67
369	Defects as qubits in 3Cland 4HBiC. <i>Physical Review B</i> , 2015 , 92,	3.3	67
368	High optical polarization ratio from semipolar (202🖽) blue-green InGaN/GaN light-emitting diodes. <i>Applied Physics Letters</i> , 2011 , 99, 051109	3.4	67

367	Structure, energetics, and vibrational properties of Si-H bond dissociation in silicon. <i>Physical Review B</i> , 1999 , 59, 12884-12889	3.3	67
366	Structure, energetics, and dissociation of Si-H bonds at dangling bonds in silicon. <i>Physical Review B</i> , 1994 , 49, 14766-14769	3.3	67
365	Distribution of donor states on etched surface of AlGaN/GaN heterostructures. <i>Journal of Applied Physics</i> , 2010 , 108, 063719	2.5	66
364	Controlling the conductivity of InN. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 1024-1036	1.6	66
363	Influence of microstructure on the carrier concentration of Mg-doped GaN films. <i>Applied Physics Letters</i> , 2001 , 79, 2734-2736	3.4	66
362	Role of oxygen vacancies in crystalline WO3. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6641-6648	7.1	65
361	Passivation and Doping due to Hydrogen in III-Nitrides. <i>Physica Status Solidi (B): Basic Research</i> , 2001 , 228, 303-307	1.3	64
360	Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors. <i>Physical Review B</i> , 2016 , 93,	3.3	61
359	BaSnO3 as a channel material in perovskite oxide heterostructures. <i>Applied Physics Letters</i> , 2016 , 108, 083501	3.4	61
358	Self-consistent band-gap corrections in density functional theory using modified pseudopotentials. <i>Physical Review B</i> , 2007 , 75,	3.3	60
357	Silicon-hydrogen bonding and hydrogen diffusion in amorphous silicon. <i>Physical Review B</i> , 1995 , 51, 10	16135 3 10	61680
356	Theory of Point Defects and Complexes in GaN. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 395, 645		60
355	Structural identification of hydrogen and muonium centers in silicon: First-principles calculations of hyperfine parameters. <i>Physical Review Letters</i> , 1990 , 64, 669-672	7.4	60
354	First-principles analysis of electron transport in BaSnO3. <i>Physical Review B</i> , 2017 , 95,	3.3	59
353	Structural origins of the properties of rare earth nickelate superlattices. <i>Physical Review B</i> , 2013 , 87,	3.3	59
352	Hydrogen interactions with acceptor impurities in SnO2: First-principles calculations. <i>Physical Review B</i> , 2009 , 79,	3.3	59
351	Analysis of a conducting channel at the native zinc oxide surface. <i>Superlattices and Microstructures</i> , 2006 , 39, 8-16	2.8	59
350	First-Principles Calculations of Point Defects for Quantum Technologies. <i>Annual Review of Materials Research</i> , 2018 , 48, 1-26	12.8	58

349	Polycrystalline nitride semiconductor light-emitting diodes fabricated on quartz substrates. <i>Applied Physics Letters</i> , 2000 , 76, 2182-2184	3.4	58
348	First-principles calculations of indirect Auger recombination in nitride semiconductors. <i>Physical Review B</i> , 2015 , 92,	3.3	57
347	Indium versus hydrogen-terminated GaN(0001) surfaces: Surfactant effect of indium in a chemical vapor deposition environment. <i>Applied Physics Letters</i> , 2004 , 84, 4322-4324	3.4	57
346	Strain effects and band parameters in MgO, ZnO, and CdO. <i>Applied Physics Letters</i> , 2012 , 101, 152105	3.4	56
345	Distributed surface donor states and the two-dimensional electron gas at AlGaN/GaN heterojunctions. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 505501	3	56
344	Determination of Internal Loss in Nitride Lasers from First Principles. <i>Applied Physics Express</i> , 2010 , 3, 082101	2.4	56
343	Monolayer to Bulk Properties of Hexagonal Boron Nitride. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 25524-25529	3.8	56
342	Defects in SiC for quantum computing. <i>Journal of Applied Physics</i> , 2011 , 109, 102417	2.5	55
341	Large and composition-dependent band gap bowing in InxGa1NN alloys. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 59, 274-278	3.1	55
340	Effect of composition on the band gap of strained InxGa1⊠N alloys. <i>Journal of Applied Physics</i> , 2003 , 93, 4340-4342	2.5	54
339	Advances in electronic structure methods for defects and impurities in solids. <i>Physica Status Solidi</i> (B): Basic Research, 2011 , 248, 19-27	1.3	53
338	Hydrogen as a shallow center in semiconductors and oxides. <i>Physica Status Solidi (B): Basic Research</i> , 2003 , 235, 89-95	1.3	53
337	Identification of hydrogen configurations in p-type GaN through first-principles calculations of vibrational frequencies. <i>Physical Review B</i> , 2003 , 68,	3.3	53
336	Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors. Journal of Applied Physics, 2014, 115, 012014	2.5	52
335	Electronic structure of nitride surfaces. <i>Journal of Crystal Growth</i> , 2007 , 300, 199-203	1.6	52
334	Arsenic impurities in GaN. <i>Applied Physics Letters</i> , 2000 , 76, 1009-1011	3.4	52
333	First-Principles Analysis of Radiative Recombination in Lead-Halide Perovskites. <i>ACS Energy Letters</i> , 2018 , 3, 2329-2334	20.1	52
332	First-principles study of the formation and migration of native defects in NaAlH4. <i>Physical Review B</i> , 2009 , 80,	3.3	50

331	Energetics of bond-centered hydrogen in strained Si-Si bonds. <i>Physical Review B</i> , 1995 , 51, 2636-2639	3.3	50
330	Iron as a source of efficient Shockley-Read-Hall recombination in GaN. <i>Applied Physics Letters</i> , 2016 , 109, 162107	3.4	50
329	Controlling n-Type Doping in MoO3. Chemistry of Materials, 2017, 29, 2563-2567	9.6	49
328	Correct Implementation of Polarization Constants in Wurtzite Materials and Impact on III-Nitrides. <i>Physical Review X</i> , 2016 , 6,	9.1	49
327	Influence of polarity on carrier transport in semipolar (2021[]) and (202[]1) multiple-quantum-well light-emitting diodes. <i>Applied Physics Letters</i> , 2012 , 100, 231110	3.4	48
326	Vacancy defects in indium oxide: An ab-initio study. <i>Current Applied Physics</i> , 2011 , 11, S296-S300	2.6	48
325	Band parameters and strain effects in ZnO and group-III nitrides. <i>Semiconductor Science and Technology</i> , 2011 , 26, 014037	1.8	48
324	Theoretical aspects of hydrogen in crystalline semiconductors. <i>Physica B: Condensed Matter</i> , 1991 , 170, 21-32	2.8	48
323	Effects of strain on the optical and vibrational properties of ZnSe-ZnSxSe1-x strained-layer superlattices. <i>Journal of Luminescence</i> , 1990 , 46, 109-136	3.8	48
322	Doping of Ga2O3 with transition metals. <i>Physical Review B</i> , 2016 , 94,	3.3	47
322	Doping of Ga2O3 with transition metals. <i>Physical Review B</i> , 2016 , 94, Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with an asymmetric waveguide structure. <i>Applied Physics Letters</i> , 1999 , 75, 581-583	3.4	47
Ĭ	Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with	3.4	
321	Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with an asymmetric waveguide structure. <i>Applied Physics Letters</i> , 1999 , 75, 581-583	3.4	47
321	Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with an asymmetric waveguide structure. <i>Applied Physics Letters</i> , 1999 , 75, 581-583 Effects of strain on the electron effective mass in GaN and AlN. <i>Applied Physics Letters</i> , 2013 , 102, 1421	3.4 0\$4 3.3	47 45 45
321 320 319	Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with an asymmetric waveguide structure. <i>Applied Physics Letters</i> , 1999 , 75, 581-583 Effects of strain on the electron effective mass in GaN and AlN. <i>Applied Physics Letters</i> , 2013 , 102, 1421 Group-V impurities in SnO2 from first-principles calculations. <i>Physical Review B</i> , 2010 , 81,	3.4 05.4 3.3 73.8 20	47 45 45
321 320 319 318	Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with an asymmetric waveguide structure. <i>Applied Physics Letters</i> , 1999 , 75, 581-583 Effects of strain on the electron effective mass in GaN and AlN. <i>Applied Physics Letters</i> , 2013 , 102, 1421 Group-V impurities in SnO2 from first-principles calculations. <i>Physical Review B</i> , 2010 , 81, Elastic Constants and Pressure-Induced Effects in MoS2. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 120	3.4 05.4 3.3 73.8 20	47 45 45 9 7.6 4
321 320 319 318	Room-temperature continuous-wave operation of InGaN multiple-quantum-well laser diodes with an asymmetric waveguide structure. <i>Applied Physics Letters</i> , 1999 , 75, 581-583 Effects of strain on the electron effective mass in GaN and AlN. <i>Applied Physics Letters</i> , 2013 , 102, 1421 Group-V impurities in SnO2 from first-principles calculations. <i>Physical Review B</i> , 2010 , 81, Elastic Constants and Pressure-Induced Effects in MoS2. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 120 Microscopic theory of hydrogen in silicon devices. <i>IEEE Transactions on Electron Devices</i> , 2000 , 47, 1779-	3.4 05.4 3.3 73.8 20	47 45 45 97.64 44

313	Native defects and impurities in GaN. Festkliperprobleme, 1996, 25-44		43
312	Electron and chemical reservoir corrections for point-defect formation energies. <i>Physical Review B</i> , 2016 , 93,	3.3	42
311	Formation and migration of charged native point defects in MgH2: First-principles calculations. <i>Physical Review B</i> , 2009 , 80,	3.3	42
310	Limitations to the room temperature mobility of two- and three-dimensional electron liquids in SrTiO3. <i>Applied Physics Letters</i> , 2015 , 106, 062102	3.4	41
309	Intrinsic and extrinsic causes of electron accumulation layers on InAs surfaces. <i>Applied Physics Letters</i> , 2010 , 97, 192106	3.4	41
308	Hydrogen donors in SnO2 studied by infrared spectroscopy and first-principles calculations. <i>Physical Review B</i> , 2010 , 82,	3.3	41
307	Band discontinuities at heterojunctions between crystalline and amorphous silicon. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1995 , 13, 1635		41
306	First-principles study of the mobility of SrTiO3. <i>Physical Review B</i> , 2014 , 90,	3.3	40
305	Universal alignment of hydrogen levels in semiconductors and insulators. <i>Physica B: Condensed Matter</i> , 2006 , 376-377, 1-6	2.8	40
304	Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. <i>Physical Review B</i> , 2020 , 101,	3.3	39
303	Band alignments and polarization properties of BN polymorphs. <i>Applied Physics Express</i> , 2014 , 7, 03100)12.4	39
302	Dangling Bonds in Hexagonal Boron Nitride as Single-Photon Emitters. <i>Physical Review Letters</i> , 2019 , 123, 127401	7.4	38
301	Surface Structures, Surfactants and Diffusion at Cubic and Wurtzite GaN. <i>MRS Internet Journal of Nitride Semiconductor Research</i> , 1998 , 3, 1		38
300	First-principles study of van der Waals interactions in MoS2 and MoO3. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 305502	1.8	37
299	Carbon dimer defect as a source of the 4.1 eV luminescence in hexagonal boron nitride. <i>Applied Physics Letters</i> , 2019 , 115, 212101	3.4	37
298	Point defects in Al2O3 and their impact on gate stacks. <i>Microelectronic Engineering</i> , 2009 , 86, 1756-175	592.5	36
297	Structure and energetics of nitride surfaces under MOCVD growth conditions. <i>Journal of Crystal Growth</i> , 2003 , 248, 8-13	1.6	36
296	Phase separation in InGaN multiple quantum wells annealed at high nitrogen pressures. <i>Applied Physics Letters</i> , 1999 , 75, 3950-3952	3.4	36

(2013-1995)

295	Hydrogen interactions with self-interstitials in silicon. <i>Physical Review B</i> , 1995 , 52, 14320-14323	3.3	36
294	Stretched-exponential relaxation modeled without invoking statistical distributions. <i>Physical Review B</i> , 1996 , 53, 11292-11295	3.3	36
293	Unexpectedly Strong Auger Recombination in Halide Perovskites. <i>Advanced Energy Materials</i> , 2018 , 8, 1801027	21.8	36
292	Correctly Assessing Defect Tolerance in Halide Perovskites. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 6022-6027	3.8	35
291	Defects in AlN as candidates for solid-state qubits. <i>Physical Review B</i> , 2016 , 93,	3.3	35
290	Impact of Group-II Acceptors on the Electrical and Optical Properties of GaN. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 08JJ04	1.4	35
289	Sub-band-gap absorption in Ga2O3. Applied Physics Letters, 2017, 111, 182104	3.4	34
288	Hybrid functional calculations of point defects and hydrogen in SrZrO3. <i>Physical Review B</i> , 2014 , 89,	3.3	34
287	Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates. <i>Applied Physics Letters</i> , 2000 , 77, 1931-1933	3.4	34
286	Accurate and efficient band-offset calculations from density functional theory. <i>Computational Materials Science</i> , 2018 , 151, 174-180	3.2	33
285	Hydrogen bonds in Al2O3 as dissipative two-level systems in superconducting qubits. <i>Scientific Reports</i> , 2014 , 4, 7590	4.9	33
284	Hydrogenated vacancies and hidden hydrogen in SrTiO3. <i>Physical Review B</i> , 2014 , 89,	3.3	33
283	Strained-layer interfaces between II V I compound semiconductors. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1988 , 6, 1350		33
282	Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. <i>Nature Materials</i> , 2021 , 20, 971-976	27	33
281	Defect identification based on first-principles calculations for deep level transient spectroscopy. <i>Applied Physics Letters</i> , 2018 , 113, 192106	3.4	33
280	Three-Dimensional Spin Texture in Hybrid Perovskites and Its Impact on Optical Transitions. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2903-2908	6.4	33
279	Optical polarization characteristics of semipolar (3031) and (3031) InGaN/GaN light-emitting diodes. <i>Optics Express</i> , 2013 , 21 Suppl 1, A53-9	3.3	32
278	Quantum computing with defects. MRS Bulletin, 2013, 38, 802-807	3.2	32

277	Insulating state of ultrathin epitaxial LaNiO3 thin films detected by hard x-ray photoemission. <i>Physical Review B</i> , 2011 , 84,	3.3	32
276	Stability, diffusivity, and vibrational properties of monatomic and molecular hydrogen in wurtzite GaN. <i>Physical Review B</i> , 2003 , 68,	3.3	32
275	A pathway to p-type wide-band-gap semiconductors. <i>Applied Physics Letters</i> , 2009 , 95, 172109	3.4	31
274	Doping of AlxGa1NN alloys. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 59, 253-257	3.1	31
273	First-Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites. <i>Advanced Energy Materials</i> , 2020 , 10, 1902830	21.8	31
272	Origins of n-type doping difficulties in perovskite stannates. <i>Physical Review B</i> , 2018 , 97,	3.3	30
271	Electronic and protonic conduction in LaFeO3. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15367-15379	13	30
270	First-principles study of vacancy-assisted impurity diffusion in ZnO. APL Materials, 2014 , 2, 096101	5.7	30
269	Theoretical study of Schottky-barrier formation at epitaxial rare-earth-metal/semiconductor interfaces. <i>Physical Review B</i> , 2010 , 81,	3.3	30
268	Hydrogen-related defects and the role of metal additives in the kinetics of complex hydrides: A first-principles study. <i>Physical Review B</i> , 2009 , 80,	3.3	30
267	Hydrogen in silicon: Fundamental properties and consequences for devices. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1998 , 16, 1767-1771	2.9	30
266	Effect of transition-metal additives on hydrogen desorption kinetics of MgH2. <i>Applied Physics Letters</i> , 2013 , 102, 033902	3.4	29
265	Role of strain in polarization switching in semipolar InGaN/GaN quantum wells. <i>Applied Physics Letters</i> , 2010 , 97, 181102	3.4	29
264	Free-carrier absorption in transparent conducting oxides: Phonon and impurity scattering in SnO2. <i>Physical Review B</i> , 2015 , 92,	3.3	28
263	Band offsets in complex-oxide thin films and heterostructures of SrTiO3/LaNiO3 and SrTiO3/GdTiO3 by soft and hard X-ray photoelectron spectroscopy. <i>Journal of Applied Physics</i> , 2013 , 113, 143704	2.5	28
262	Exchange of deeply trapped and interstitial hydrogen in silicon. <i>Physical Review B</i> , 1999 , 59, 5493-5497	3.3	28
261	Hydrogen-induced metastable changes in the electrical conductivity of polycrystalline silicon. <i>Physical Review Letters</i> , 1994 , 72, 3393-3396	7.4	28
260	Structural investigation of the bilayer iridate Sr3Ir2O7. <i>Physical Review B</i> , 2016 , 93,	3.3	27

Native point defects in LaAlO3: A hybrid functional study. <i>Physical Review B</i> , 2013 , 88,	3.3	27	
Defects at Ge/oxide and IIIIV/oxide interfaces. <i>Microelectronic Engineering</i> , 2013 , 109, 211-215	2.5	27	
Lack of quantum confinement in Ga2O3 nanolayers. <i>Physical Review B</i> , 2017 , 96,	3.3	27	
Native Defects and Impurities in Cubic and Wurtzite Gan. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 339, 687		27	
Auger Recombination in GaAs from First Principles. ACS Photonics, 2014, 1, 643-646	6.3	26	
Small polarons and point defects in barium cerate. <i>Physical Review B</i> , 2015 , 92,	3.3	26	
Hybrid functional calculations of native point defects in InN. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 65-70	1.6	26	
Mechanism for the decomposition of lithium borohydride. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 5825-5832	6.7	26	
Role of hydrogen in surface reconstructions and growth of GaN. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2002 , 20, 1640		26	
Energetics and vibrational frequencies of interstitial H2 molecules in semiconductors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 58, 17-23	3.1	26	
First-principles surface energies for monoclinic Ga2O3 and Al2O3 and consequences for cracking of (AlxGa1日)2O3. <i>APL Materials</i> , 2020 , 8, 091105	5.7	26	
Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain. <i>Physical Review Letters</i> , 2018 , 120, 167701	7.4	25	
Electronic structure of a single-layer InN quantum well in a GaN matrix. <i>Applied Physics Letters</i> , 2013 , 102, 102103	3.4	25	
Effects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes. <i>Applied Physics Letters</i> , 2014 , 105, 083507	3.4	24	
Mechanisms for the decomposition and dehydrogenation of Li amide/imide. <i>Physical Review B</i> , 2012 , 85,	3.3	24	
Step-flow growth of ZnO(0 0 0 1) on GaN(0 0 0 1) by metalorganic chemical vapor epitaxy. <i>Journal of Crystal Growth</i> , 2008 , 310, 3407-3412	1.6	24	
Entropy-driven stabilization of a novel configuration for acceptor-hydrogen complexes in GaN. <i>Physical Review Letters</i> , 2001 , 87, 205505	7.4	24	
Doping limits in ZnSe. <i>Physica B: Condensed Matter</i> , 1993 , 185, 118-127	2.8	24	
	Defects at Ge/oxide and IIIII/oxide interfaces. <i>Microelectronic Engineering</i> , 2013, 109, 211-215 Lack of quantum confinement in Ga2O3 nanolayers. <i>Physical Review B</i> , 2017, 96, Native Defects and Impurities in Cubic and Wurtzite Gan. <i>Materials Research Society Symposia Proceedings</i> , 1994, 339, 687 Auger Recombination in GaAs from First Principles. <i>ACS Photonics</i> , 2014, 1, 643-646 Small polarons and point defects in barium cerate. <i>Physical Review B</i> , 2015, 92, Hybrid functional calculations of native point defects in InN. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012, 209, 65-70 Mechanism for the decomposition of lithium borohydride. <i>International Journal of Hydrogen Energy</i> , 2012, 37, 5825-5832 Role of hydrogen in surface reconstructions and growth of GaN. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2002, 20, 1640 Energetics and visitional frequencies of interstitial H2 molecules in semiconductors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999, 58, 17-23 First-principles surface energies for monoclinic Ga2O3 and Al2O3 and consequences for cracking of (AlxGa18)/2O3. <i>APL Materials</i> , 2020, 8, 091105 Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain. <i>Physical Review Letters</i> , 2018, 120, 167701 Electronic structure of a single-layer InN quantum well in a GaN matrix. <i>Applied Physics Letters</i> , 2013, 102, 102103 Effects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes. <i>Applied Physics Letters</i> , 2014, 105, 083507 Mechanisms for the decomposition and dehydrogenation of Li amide/imide. <i>Physical Review B</i> , 2012, 85, Step-flow growth of ZnO(0 0 0 1) on GaN(0 0 0 1) by metalorganic chemical vapor epitaxy. <i>Journal of Crystal Growth</i> , 2008, 310, 3407-3412 Entropy-driven stabilization of a novel configuration for acceptor-hydrogen complexes in GaN. <i>Physical Review Letters</i> , 2001, 87,	Defects at Ge/oxide and IIIB/oxide interfaces. Microelectronic Engineering, 2013, 109, 211-215 Lack of quantum confinement in Ga2O3 nanolayers. Physical Review B, 2017, 96, 33 Native Defects and Impurities in Cubic and Wurtzite Gan. Materials Research Society Symposia Proceedings, 1994, 339, 687 Auger Recombination in GaAs from First Principles. ACS Photonics, 2014, 1, 643-646 63 Small polarons and point defects in barium cerate. Physical Review B, 2015, 92, Hybrid functional calculations of native point defects in InN. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 65-70 Mechanism for the decomposition of Ilithium borohydride. International Journal of Hydrogen Energy, 2012, 37, 825-5832 Role of hydrogen in surface reconstructions and growth of GaN. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1640 Energetics and vibrational frequencies of interstitial H2 molecules in semiconductors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 58, 17-23 First-principles surface energies for monoclinic Ga2O3 and Al2O3 and consequences for cracking of (AlxGa1B)2O3. APL Materials, 2020, 8, 091105 Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain. Physical Review Letters, 2018, 120, 167701 Electronic structure of a single-layer InN quantum well in a GaN matrix. Applied Physics Letters, 2013, 102, 102103 Effects of In profile on simulations of InGaN/GaN multi-quantum-well light-emitting diodes. Applied Physics Letters, 2014, 105, 083507 Mechanisms for the decomposition and dehydrogenation of Li amide/imide. Physical Review B, 2012, 85, Step-flow growth of ZnO(0 0 0 1) on GaN(0 0 0 1) by metalorganic chemical vapor epitaxy. Journal of Crystal Growth, 2008, 310, 3407-3412 Entropy-driven stabilization of a novel configuration for acceptor-hydrogen complexes in GaN. Physical Review Letters, 2001, 87, 205505	Defects at Ge/oxide and IIII/oxide interfaces. Microelectronic Engineering, 2013, 109, 211-215 2.5 27 Lack of quantum confinement in Ga2O3 nanolayers. Physical Review B, 2017, 96, 3.3 2.7 Native Defects and Impurities in Cubic and Wurtzite Gan. Materials Research Society Symposia Proceedings, 1994, 339, 687 Auger Recombination in GaAs from First Principles. ACS Photonics, 2014, 1, 643-646 6.3 2.6 Small polarons and point defects in barium cerate. Physical Review B, 2015, 92, 3.3 2.6 Hybrid functional calculations of native point defects in InN. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 65-70 Mechanism for the decomposition of lithium borohydride. International Journal of Hydrogen Energy, 2012, 37, 5825-5832 Role of hydrogen in surface reconstructions and growth of GaN. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1640 Energetics and vibrational frequencies of interstitial Hz molecules in semiconductors. Materials Science and Engineering B Solid-State Materials for Advanced Technology, 1999, 58, 17-23 First-principles surface energies for monoclinic Ga2O3 and Al2O3 and consequences for cracking of (AlxGa18)2O3. APL Materials, 2020, 8, 091105 Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain. Physical Review Letters, 2018, 120, 167701 Electronic structure of a single-layer InN quantum well in a GaN matrix. Applied Physics Letters, 2013, 120, 167701 Mechanisms for the decomposition and dehydrogenation of Li amide/imide. Physical Review B, 2012, 85, 5829-180w growth of ZnO(0 0 0 1) on GaN(0 0 0 1) by metalorganic chemical vapor epitaxy. Journal of Crystal Growth, 2008, 310, 3407-3412 Entropy-driven stabilization of a novel configuration for acceptor-hydrogen complexes in GaN. Physical Review Letters, 2001, 87, 205505

241	Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals. <i>Physical Review Letters</i> , 2009 , 102, 096401	7.4	23
240	Physics and chemistry of hydrogen in the vacancies of semiconductors. <i>Physical Review B</i> , 2003 , 68,	3.3	23
239	Energetic, spatial, and momentum character of the electronic structure at a buried interface: The two-dimensional electron gas between two metal oxides. <i>Physical Review B</i> , 2016 , 93,	3.3	22
238	Near-infrared absorption and semimetal-semiconductor transition in 2nm ErAs nanoparticles embedded in GaAs and AlAs. <i>Applied Physics Letters</i> , 2008 , 92, 173116	3.4	22
237	Hydrogen in semiconductors and insulators. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 48-51	5.7	22
236	Strain and the interpretation of band-lineup measurements. <i>Physical Review Letters</i> , 1987 , 59, 946	7.4	22
235	Impact of native defects in high-k dielectric oxides on GaN/oxide metal®xide®emiconductor devices. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 787-791	1.3	21
234	Structure and energetics of LaAlO3 (001) surfaces. <i>Physical Review B</i> , 2014 , 90,	3.3	21
233	Turning SrTiO3 into a Mott insulator. <i>Physical Review B</i> , 2014 , 90,	3.3	21
232	Comment on "Heterojunction valence-band-discontinuity dependence on face orientation". <i>Physical Review B</i> , 1988 , 37, 4801-4802	3.3	21
231	Role of point defects in the electrical and optical properties of In2O3. <i>Physical Review Materials</i> , 2019 , 3,	3.2	21
230	Ferroelastic switching of doped zirconia: Modeling and understanding from first principles. <i>Physical Review B</i> , 2014 , 90,	3.3	20
229	Properties of In-Doped ZnO Films Grown by Metalorganic Chemical Vapor Deposition on GaN(0001) Templates. <i>Journal of Electronic Materials</i> , 2010 , 39, 608-611	1.9	20
228	Computational studies of conductivity in wide-band-gap semiconductors and oxides. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 064230	1.8	20
227	Optimizing optical absorption of TiO2 by alloying with TiS2. <i>Applied Physics Letters</i> , 2008 , 92, 041104	3.4	20
226	Doping of AlGaN Alloys. <i>MRS Internet Journal of Nitride Semiconductor Research</i> , 1999 , 4, 890-901		20
225	Atomic scale investigation of aluminum incorporation, defects, and phase stability in E(AlxGa1日)2O3 films. <i>APL Materials</i> , 2021 , 9, 051103	5.7	20
224	Posner molecules: from atomic structure to nuclear spins. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 12373-12380	3.6	19

(2012-2008)

223	Mutual passivation of electrically active and isovalent impurities in dilute nitrides. <i>Physical Review Letters</i> , 2008 , 100, 045505	7.4	19
222	Theory of Point Defects and Interfaces. Materials Research Society Symposia Proceedings, 1996, 449, 86	1	19
221	A first-principles understanding of point defects and impurities in GaN. <i>Journal of Applied Physics</i> , 2021 , 129, 111101	2.5	19
220	Phase transformations upon doping in WO. <i>Journal of Chemical Physics</i> , 2017 , 146, 214504	3.9	18
219	Small hole polarons in rare-earth titanates. <i>Applied Physics Letters</i> , 2015 , 106, 232103	3.4	18
218	Point defects, impurities, and small hole polarons in GdTiO3. <i>Physical Review B</i> , 2016 , 93,	3.3	18
217	Interband and polaronic excitations in YTiO3 from first principles. <i>Physical Review B</i> , 2014 , 90,	3.3	18
216	Deep donor state of the copper acceptor as a source of green luminescence in ZnO. <i>Applied Physics Letters</i> , 2017 , 111, 042101	3.4	18
215	Structural and electronic properties of SrZrO3 and Sr(Ti,Zr)O3 alloys. <i>Physical Review B</i> , 2015 , 92,	3.3	18
214	Influence of Mg-doped barriers on semipolar (202🛮 1) multiple-quantum-well green light-emitting diodes. <i>Applied Physics Letters</i> , 2011 , 99, 141114	3.4	18
213	The particle-size dependence of the activation energy for decomposition of lithium amide. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10170-3	16.4	18
212	Characteristics of InGaN-AlGaN multiple-quantum-well laser diodes. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1998 , 4, 498-504	3.8	18
211	Nitrogen doping in ZnSe and ZnTe. Solid State Communications, 1995, 93, 447-450	1.6	18
210	Band bowing and the direct-to-indirect crossover in random BAlN alloys. <i>Physical Review Materials</i> , 2017 , 1,	3.2	18
209	Electrical and optical properties of iron in GaN, AlN, and InN. <i>Physical Review B</i> , 2019 , 99,	3.3	17
208	High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier. <i>Electronics Letters</i> , 2015 , 51, 1187-1189	1.1	17
207	Hybrid functional study of native point defects and impurities in ZnGeN2. <i>Journal of Applied Physics</i> , 2017 , 122, 195701	2.5	17
206	Decomposition mechanism and the effects of metal additives on the kinetics of lithium alanate. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2840-8	3.6	17

205	Theory of Hydrogen in GaN. Semiconductors and Semimetals, 1999, 479-502	0.6	17
204	Brittle fracture toughnesses of GaN and AlN from first-principles surface-energy calculations. <i>Applied Physics Letters</i> , 2015 , 106, 212103	3.4	16
203	First-principles study of high-field-related electronic behavior of group-III nitrides. <i>Physical Review B</i> , 2014 , 90,	3.3	15
202	First-principles study of surface charging in LaAlO3/SrTiO3 heterostructures. <i>Physical Review B</i> , 2015 , 92,	3.3	15
201	Ab initio study of enhanced thermal conductivity in ordered AlGaO3 alloys. <i>Applied Physics Letters</i> , 2019 , 115, 242103	3.4	15
200	Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 22LT03	3	14
199	Growth of coherent BGaN films using BBr3 gas as a boron source in plasma assisted molecular beam epitaxy. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 04150) 3 .9	14
198	Hole polarons and p-type doping in boron nitride polymorphs. <i>Physical Review B</i> , 2017 , 96,	3.3	14
197	Confinement effects on valence-subband character and polarization anisotropy in (112½) semipolar InGaN/GaN quantum wells. <i>Journal of Applied Physics</i> , 2012 , 111, 073113	2.5	14
196	Electrical activity of hydrogen impurities in GaSb: First-principles calculations. <i>Physical Review B</i> , 2008 , 78,	3.3	14
195	Electronic materials theory: Interfaces and defects. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2003 , 21, S182-S190	2.9	14
194	Orientation-dependent band offsets between (AlxGa1日)2O3 and Ga2O3. <i>Applied Physics Letters</i> , 2020 , 117, 252104	3.4	14
193	Acceptor doping in the proton conductor SrZrO. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 11485-1	14961	13
192	Enhanced Optical Absorption Due to Symmetry Breaking in TiO2(1🛭)S2x Alloys. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4189-4193	3.8	13
191	Hydrogen in GaN. Materials Research Society Symposia Proceedings, 1995, 395, 723		13
190	Band offsets at interfaces between HgTe, CdTe, and InSb. <i>Journal of Vacuum Science & Technology</i> an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1987 , 5, 1225		13
189	Band Offsets at Strained-Layer Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1987 , 102, 565		13
188	Limitations of In2O3 as a transparent conducting oxide. <i>Applied Physics Letters</i> , 2019 , 115, 082105	3.4	12

(2008-2020)

187	Band alignments and polarization properties of the Zn-IV-nitrides. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7890-7898	7.1	12	
186	Hidden role of Bi incorporation in nonradiative recombination in methylammonium lead iodide. Journal of Materials Chemistry A, 2020 , 8, 12964-12967	13	12	
185	Effect of Titanium Induced Chemical Inhomogeneity on Crystal Structure, Electronic Structure, and Optical Properties of Wide Band Gap Ga2O3. <i>Crystal Growth and Design</i> , 2020 , 20, 1422-1433	3.5	12	
184	Hydrogen intercalation in MoS2. <i>Physical Review B</i> , 2016 , 94,	3.3	12	
183	Metalorganic chemical vapor deposition of ZnO(0001) thin films on GaN(0001) templates and ZnO(0001) substrates. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 3091-3094		12	
182	Role of hydrogen at germanium/dielectric interfaces. <i>Thin Solid Films</i> , 2008 , 517, 144-147	2.2	12	
181	Performance and optical gain characteristic of InGaN MQW laser diodes. <i>Journal of Luminescence</i> , 2000 , 87-89, 135-139	3.8	12	
180	Spin-polarized calculations and hyperfine parameters for hydrogen or muonium in GaAs. <i>Physical Review B</i> , 1993 , 47, 4256-4260	3.3	12	
179	Properties of hydrogen in crystalline silicon under compression and tension. <i>Physical Review Letters</i> , 1989 , 63, 1090-1093	7.4	12	
178	Nonrad: Computing nonradiative capture coefficients from first principles. <i>Computer Physics Communications</i> , 2021 , 267, 108056	4.2	12	
177	First-principles study of bandgap bowing in BGaN alloys. <i>Journal of Applied Physics</i> , 2019 , 126, 095706	2.5	11	
176	Optimizing Proton Conductivity in Zirconates through Defect Engineering. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2611-2619	6.1	11	
175	Determination of the Mott-Hubbard gap in GdTiO3. <i>Physical Review B</i> , 2015 , 92,	3.3	11	
174	First-principles study of direct and indirect optical absorption in BaSnO3. <i>Applied Physics Letters</i> , 2018 , 112, 062106	3.4	11	
173	Ion-Transport Engineering of Alkaline-Earth Hydrides for Hydride Electrolyte Applications. <i>Chemistry of Materials</i> , 2018 , 30, 5878-5885	9.6	11	
172	Sulfur doping of AlN and AlGaN for improved n-type conductivity. <i>Physica Status Solidi - Rapid Research Letters</i> , 2015 , 9, 462-465	2.5	11	
171	Vibrational signatures of OTe and OTeI/Cd in CdTe: A first-principles study. <i>Computational Materials Science</i> , 2010 , 49, S242-S245	3.2	11	
170	Theoretical study of the structural and electronic properties of strained ErAs. <i>Physical Review B</i> , 2008 , 77,	3.3	11	

169	Role of Hydrogen and Hydrogen Complexes in Doping of GaN. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 423, 619		11
168	Atomic and electronic structure of CaSi2/Si interfaces. <i>Physical Review B</i> , 1991 , 43, 11913-11919	3.3	11
167	Calcium as a nonradiative recombination center in InGaN. Applied Physics Express, 2017, 10, 021001	2.4	10
166	Carbon-induced trapping levels in oxide dielectrics. <i>Journal of Vacuum Science and Technology A:</i> Vacuum, Surfaces and Films, 2015 , 33, 01A120	2.9	10
165	Alternative sources of p-type conduction in acceptor-doped ZnO. <i>Applied Physics Letters</i> , 2010 , 97, 0721	32 4	10
164	Hydrogen-related defects in sodium alanate. <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 459-461	5.7	10
163	Comment on "Electron paramagnetic resonance of molecular hydrogen in silicon". <i>Physical Review Letters</i> , 1994 , 73, 1456	7.4	10
162	Impact of Point Defects on Proton Conduction in Strontium Cerate. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 9562-9568	3.8	10
161	Strategies for p-type doping of ZnGeN2. Applied Physics Letters, 2019, 114, 032101	3.4	9
160	Spinning up quantum defects in 2D materials. <i>Nature Materials</i> , 2020 , 19, 487-489	27	9
159	Point-defect kinetics in ⊞and EMgH2. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 5688-5692	6.7	9
158	Hydrogen passivation of impurities in Al(2)O(3). ACS Applied Materials & amp; Interfaces, 2014, 6, 4149-5	3 9.5	9
157	Dissipation-factor-based criterion for the validity of carrier-type identification by capacitance-voltage measurements. <i>Applied Physics Letters</i> , 2009 , 94, 152110	3.4	9
156	Effect of Si doping on the strain and defect structure of GaN thin films. <i>Physica B: Condensed Matter</i> , 1999 , 273-274, 50-53	2.8	9
155	First-principles calculations of hyperfine interaction, binding energy, and quadrupole coupling for shallow donors in silicon. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	9
154	Impact of nitrogen and carbon on defect equilibrium in ZrO2. Acta Materialia, 2016 , 117, 286-292	8.4	9
153	Comment on Comparative study of ab initio nonradiative recombination rate calculations under different formalisms (Physical Review B, 2018, 97,	3.3	8
152	Interfacial Cation-Defect Charge Dipoles in Stacked TiO/AlO Gate Dielectrics. <i>ACS Applied Materials</i> & amp; Interfaces, 2018, 10, 5140-5146	9.5	8

(1991-2016)

151	Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO3/SrTiO3 Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2016 , 211, 70-81	1.7	8
150	Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO3 embedded in GdTiO3. <i>Applied Physics Letters</i> , 2015 , 107, 231602	3.4	8
149	Point-defect-mediated dehydrogenation of AlH3. Applied Physics Letters, 2010, 97, 201902	3.4	8
148	Carbon-nitrogen molecules in GaAs and GaP. <i>Physical Review B</i> , 2008 , 77,	3.3	8
147	Band gap changes of GaN shocked to 13 GPa. Applied Physics Letters, 2002, 80, 1912-1914	3.4	8
146	Hydrogen in III☑ Nitrides. Semiconductors and Semimetals, 1999 , 157-184	0.6	8
145	Theory of Hydrogen Interactions with Amorphous Silicon. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 557, 275		8
144	Solubilities, defect reactions and doping limits in ZnSe. <i>Journal of Crystal Growth</i> , 1992 , 117, 704-709	1.6	8
143	Effects of La 5d and 4f states on the electronic and optical properties of LaAlO3. <i>Physical Review B</i> , 2016 , 94,	3.3	7
142	Phonon- and charged-impurity-assisted indirect free-carrier absorption in Ga2O3. <i>Physical Review B</i> , 2019 , 100,	3.3	7
141	Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells. <i>Applied Physics Letters</i> , 2013 , 103, 073115	3.4	7
140	Conditions for T2 resistivity from electron-electron scattering. <i>European Physical Journal B</i> , 2017 , 90, 1	1.2	7
139	Effects of surface reconstructions on oxygen adsorption at AlN polar surfaces. <i>Europhysics Letters</i> , 2010 , 89, 56004	1.6	7
138	Defects and Doping in III-V Nitrides. <i>Materials Science Forum</i> , 1997 , 258-263, 19-26	0.4	7
137	Hydrogen states in silicon. Journal of Non-Crystalline Solids, 1998, 227-230, 111-119	3.9	7
136	Design and performance of asymmetric waveguide nitride laser diodes. <i>IEEE Journal of Quantum Electronics</i> , 2000 , 36, 184-191	2	7
135	DX CENTERS IN AlGaN. International Journal of Modern Physics B, 1999, 13, 1363-1378	1.1	7
134	Chapter 16 Theory of Isolated Interstitial Hydrogen and Muonium in Crystalline Semiconductors. Semiconductors and Semimetals, 1991 , 34, 585-622	0.6	7

133	Theory of defects, impurities, and doping in ZnSe. Journal of Luminescence, 1992, 52, 1-8	3.8	7
132	All-inorganic halide perovskites as candidates for efficient solar cells. <i>Cell Reports Physical Science</i> , 2021 , 2, 100604	6.1	7
131	Deep-Level Defects and Impurities in InGaN Alloys. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 1900534	1.3	7
130	Radiative capture rates at deep defects from electronic structure calculations. <i>Physical Review B</i> , 2020 , 102,	3.3	7
129	Vibrational and vibronic structure of isolated point defects: The nitrogen-vacancy center in diamond. <i>Physical Review B</i> , 2021 , 104,	3.3	7
128	Giant polarization charge density at lattice-matched GaN/ScN interfaces. <i>Applied Physics Letters</i> , 2019 , 115, 232103	3.4	7
127	Role of Ga and In adatoms in the epitaxial growth of La2O3. <i>Physical Review B</i> , 2020 , 102,	3.3	6
126	Identification of Microscopic Hole-Trapping Mechanisms in Nitride Semiconductors. <i>IEEE Electron Device Letters</i> , 2016 , 37, 154-156	4.4	6
125	LiH as a Li+ and Hilon provider. <i>Solid State Ionics</i> , 2013 , 253, 53-56	3.3	6
124	Impact of electric-field dependent dielectric constants on two-dimensional electron gases in complex oxides. <i>Applied Physics Letters</i> , 2015 , 107, 183505	3.4	6
123	Nitride-based high-electron-mobility transistor with single-layer InN for mobility-enhanced channel. <i>Applied Physics Express</i> , 2015 , 8, 024302	2.4	6
122	The role of native defects in the transport of charge and mass and the decomposition of Li4BN3H10. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 25314-20	3.6	6
121	Controlling the Conductivity in Oxide Semiconductors. Springer Series in Materials Science, 2012, 23-35	0.9	6
120	Stability and mobility of native point defects in AlH3. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S658-	-S ₉₆₉ 61	6
119	Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors 2011 , 213-239		6
118	Physics of defects and hydrogen in dilute nitrides. <i>IEE Proceedings: Optoelectronics</i> , 2004 , 151, 369-377		6
117	Theory of Hydrogen in Semiconductors. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 513, 55		6
116	Atomic Hydrogen in GaN. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 378, 503		6

(2022-2020)

115	Anomalous Auger Recombination in PbSe. <i>Physical Review Letters</i> , 2020 , 125, 037401	7.4	6	
114	Hydrogen-Induced Degradation of NaMnO2. <i>Chemistry of Materials</i> , 2019 , 31, 5224-5228	9.6	5	
113	Surprising stability of neutral interstitial hydrogen in diamond and cubic BN. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 06LT01	1.8	5	
112	Theory and Modeling of Oxide Semiconductors. Semiconductors and Semimetals, 2013, 88, 1-37	0.6	5	
111	Band alignment at band-insulator/Mott-insulator interfaces. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 577-582	2.5	5	
110	First-principles investigations of F and Cl impurities in NaAlH4. <i>Journal of Alloys and Compounds</i> , 2009 , 484, 347-351	5.7	5	
109	CW Operation of InGaN MQW Laser Diodes. <i>Physica Status Solidi A</i> , 2000 , 180, 139-147		5	
108	Inverted Order of Acceptor and Donor Levels of Monatomic Hydrogen in Silicon. <i>Physical Review Letters</i> , 1995 , 74, 1889-1889	7.4	5	
107	Tight-binding initialization for generating high-quality initial wave functions: application to defects and impurities in GaN. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 408, 43		5	
106	Hydrogen Diffusion and Passivation of Shallow Impurities in Crystalline Silicon. <i>Materials Science Forum</i> , 1991 , 38-41, 979-984	0.4	5	
105	Native Defect Compensation in Wide-Band-Gap Semiconductors. <i>Materials Science Forum</i> , 1992 , 83-87, 1225-1234	0.4	5	
104	Atomic and electronic structure of Si-Ge superlattices. <i>Physical Review Letters</i> , 1989 , 62, 974	7.4	5	
103	Summary Abstract: Theoretical investigations of fluorineBilicon systems. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1988 , 6, 1973-1974	2.9	5	
102	Band alignments between SmTiO3, GdTiO3, and SrTiO3. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2016 , 34, 061102	2.9	5	
101	First-principles study of antisite defects in perovskite stannates. <i>Journal of Applied Physics</i> , 2019 , 126, 195701	2.5	5	
100	Adsorption and Diffusion of Aluminum on EGaO(010) Surfaces. ACS Applied Materials & Camp; Interfaces, 2021, 13, 10650-10655	9.5	5	
99	Carrier-induced absorption as a mechanism for electrochromism in tungsten trioxide. <i>MRS Communications</i> , 2018 , 8, 926-931	2.7	5	
98	Epitaxial ScxAl1NN on GaN exhibits attractive high-K dielectric properties. <i>Applied Physics Letters</i> , 2022 , 120, 152901	3.4	5	

97	Electrical compensation mechanism in fluorine-doped SnO2. <i>Applied Physics Letters</i> , 2017 , 111, 152107	3.4	4
96	First-principles study of electron-phonon interactions and transport in anatase TiO2. <i>Physical Review B</i> , 2019 , 100,	3.3	4
95	Optimizing n-type doping of ZnGeN2 and ZnSiN2. <i>Physical Review B</i> , 2019 , 100,	3.3	4
94	Multilayer transition-metal dichalcogenide channel Thin-Film Transistors 2012,		4
93	Atomic and electronic structure of hydrogen-related centers in hydrogen storage materials. <i>Physica B: Condensed Matter</i> , 2009 , 404, 793-797	2.8	4
92	Theoretical Study of Native Point Defects in AlN and InN. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 482, 910		4
91	Technology development & design for 22 nm InGaAs/InP-channel MOSFETs 2008,		4
90	Doping of AlGaN Alloys. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 537, 1		4
89	Johnson, Herring, and Van de Walle reply. <i>Physical Review Letters</i> , 1995 , 74, 4566	7.4	4
88	Silicon-Hydrogen Bonding and Hydrogen Diffusion in Amorphous Silicon. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 377, 389		4
87	Theoretical Study of Semiconductor Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1985 , 63, 21		4
86	Electronic structure and magneto-optical properties of silicon-nitrogen-vacancy complexes in diamond. <i>Physical Review B</i> , 2020 , 102,	3.3	4
85	Defect tolerance in halide perovskites: A first-principles perspective. <i>Journal of Applied Physics</i> , 2022 , 131, 090901	2.5	4
84	Effects of biaxial stress and layer thickness on octahedral tilts in LaNiO3. <i>Applied Physics Letters</i> , 2015 , 107, 261901	3.4	3
83	Dehydrogenation of AlH3 via the Vacancy Clustering Mechanism. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 12995-13002	3.8	3
82	Native Point Defects and Doping in ZnO 2011 , 113-134		3
81	Hydrogen in oxides and nitrides: unexpected physics and impact on devices. <i>IOP Conference Series: Materials Science and Engineering</i> , 2010 , 15, 012001	0.4	3
80	Growth of In-doped ZnO films by metalorganic chemical vapor deposition on GaN(0001) templates. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, 1464-1467		3

(2002-2009)

79	Homoepitaxial growth and characterization of ZnO(0001) thin films grown by metalorganic chemical vapor epitaxy. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, 1460-1463		3
78	Effects of Ionicity on Defect Physics of Wide-Band-Gap Semiconductors. <i>Materials Science Forum</i> , 2004 , 457-460, 15-20	0.4	3
77	Effects of N on the electronic structures of H defects in IIIN semiconductors. <i>Optical Materials</i> , 2004 , 25, 261-269	3.3	3
76	Hydrogen Interactions with Polycrystalline and Amorphous SiliconTheory. <i>Semiconductors and Semimetals</i> , 1999 , 61, 241-281	0.6	3
75	Phase Stability and Electronic Structure of GaAs1Nx Alloys. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 379, 3		3
74	Fluorine-Silicon Reactions and the Etching of Crystalline Silicon. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 141, 425		3
73	Incorporation of Si and Sn donors in EGa2O3 through surface reconstructions. <i>Journal of Applied Physics</i> , 2021 , 130, 185703	2.5	3
72	Prospects for n-type conductivity in cubic boron nitride. <i>Applied Physics Letters</i> , 2021 , 119, 162105	3.4	3
71	Thermodynamics of boron incorporation in BGaN. Physical Review Materials, 2021, 5,	3.2	3
70	Piezoelectric effect and polarization switching in Al1\(\mathbb{B}\)ScxN. Journal of Applied Physics, 2021 , 130, 10410	12.5	3
69	Role of carbon and hydrogen in limiting n -type doping of monoclinic (AlxGa1図)2. <i>Physical Review B</i> , 2022 , 105,	3.3	3
68	Polarization properties at rocksalt/wurtzite oxide interfaces. <i>Physical Review B</i> , 2020 , 102,	3.3	2
67	Defects in Germanium 2015 , 1-23		2
66	Conductivity and transparency of TiO2from first principles 2013,		2
65	Advanced Calculations for Defects in Solids Œlectronic Structure Methods. <i>Physica Status Solidi (B):</i> Basic Research, 2011 , 248, 17-18	1.3	2
64	Electrically active Er doping in InAs, In0.53Ga0.47As, and GaAs. <i>Applied Physics Letters</i> , 2012 , 101, 23210	33.4	2
63	sComment on ''Surface silicon-deuterium bond energy from gas-phase equilibration". <i>Physical Review B</i> , 1997 , 55, 13314-13318	3.3	2
62	Quantitative Analysis of Absorption and Field-Induced Absorption Changes in InGaN/GaN Quantum Wells. <i>Physica Status Solidi (B): Basic Research</i> , 2002 , 234, 742-745	1.3	2

61	Theory of Impurities and Defects in III-Nitrides: Vacancies in GaN and Related Materials. <i>Materials Science Forum</i> , 2000 , 338-342, 1561-1566	0.4	2
60	Isolated Monatomic Hydrogen in Silicon. Semiconductors and Semimetals, 1999, 61, 13-23	0.6	2
59	Theoretical study of band offsets at semiconductor interfaces. <i>Perspectives in Condensed Matter Physics</i> , 1988 , 268-279		2
58	Inflection points in the conduction-band structure of BaSnO3. <i>Physical Review B</i> , 2020 , 102,	3.3	2
57	Finite-size correction for slab supercell calculations of materials with spontaneous polarization. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	2
56	Hydride Conductivity in Nitride Hydrides. ACS Applied Energy Materials, 2021, 4, 6348-6355	6.1	2
55	Metal versus insulator behavior in ultrathin SrTiO3-based heterostructures. <i>Physical Review B</i> , 2016 , 94,	3.3	2
54	Boron dangling bonds in a monolayer of hexagonal boron nitride. <i>Journal of Applied Physics</i> , 2021 , 129, 064301	2.5	2
53	Sr3Ir2O7F2: Topochemical conversion of a relativistic Mott state into a spin-orbit driven band insulator. <i>Physical Review B</i> , 2018 , 98,	3.3	2
52	Materials and device simulations for silicon qubit design and optimization. MRS Bulletin, 2021, 46, 634-0	5 4 ,12	2
51	Hole Trapping at Acceptor Impurities and Alloying Elements in AlN. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100218	2.5	2
50	Mg doping and diffusion in (010) EGa2O3 films grown by plasma-assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2021 , 130, 235301	2.5	2
49	Ab initio study of hydrogenic effective mass impurities in Si nanowires. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 095303	1.8	1
48	First-principles study of transport in WO3. <i>Physical Review B</i> , 2020 , 101,	3.3	1
47	Electron doping in Sr3Ir2O7: Collapse of band gap and magnetic order. <i>Physical Review B</i> , 2018 , 98,	3.3	1
46	Nanomembrane EGa2O3 high-voltage field effect transistors 2013 ,		1
45	Predicting Polaronic Defect States by Means of Generalized Koopmans Density Functional Calculations 2011 , 183-199		1
44	Defect Levels Through Hybrid Density Functionals: Insights and Applications 2011 , 111-137		1

(2000-2008)

43	Properties of ZnO(0001) layers grown by metalorganic chemical vapor deposition on GaN(0001) templates. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2008 , 5, 1733-1735		1
42	Performance characteristics of cw InGaN multiple-quantum-well laser diodes. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 639, 1061		1
41	Evidence for Oxygen DX Centers in AlGaN. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 512, 531		1
40	MOCVD growth and characterization of AlGaInN multiple quantum well heterostructures and laser diodes. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 59, 33-3	38 ¹	1
39	New Model for Btretched Exponential Relaxation. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 420, 533		1
38	Theory of Defects in Wide-Band-Gap Semiconductors. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 378, 467		1
37	First-Principles Investigations of Hydrogen and Fluorine on Silicon Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 259, 375		1
36	First-principles calculations of optical transitions at native defects and impurities in ZnO 2018,		1
35	Impact of point defects on electrochromism in WO3 2018,		1
34	Surprising stability of polar (001) surfaces of the Mott insulator GdTiO3. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2021 , 39, 063220	2.9	1
33	2016,		1
32	Defect Chemistry and Hydrogen Transport in La/Sr-Based Oxyhydrides. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 2250-2256	3.8	1
31	Impact of dangling bonds on properties of h-BN. 2D Materials, 2021, 8, 024002	5.9	1
30	First-principles study of electron transport in ScN. <i>Physical Review B</i> , 2021 , 104,	3.3	1
29	Structural, electronic, and polarization properties of YN and LaN. Physical Review Materials, 2021, 5,	3.2	1
28	Defects and Impurities in Semiconductors 2005 , 1877-1888		1
27	Prospects for high carrier mobility in the cubic germanates. <i>Semiconductor Science and Technology</i> , 2020 , 35, 085030	1.8	0

25	Understanding carbon contamination in the proton-conducting zirconates and cerates. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 14205-14211
24	Time-Dependent Density Functional Study on the Excitation Spectrum of Point Defects in Semiconductors 2011 , 341-358
23	SiO2 in Density Functional Theory and Beyond 2011 , 201-211
22	Electrostatic Interactions between Charged Defects in Supercells 2011 , 241-258
21	Ab Initio Green's Function Calculation of Hyperfine Interactions for Shallow Defects in Semiconductors 2011 , 305-339
20	Accurate Gap Levels and Their Role in the Reliability of Other Calculated Defect Properties 2011 , 139-154
19	Critical Evaluation of the LDA + U Approach for Band Gap Corrections in Point Defect Calculations: The Oxygen Vacancy in ZnO Case Study 2011 , 165-181
18	Accurate KohnBham DFT With the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modelling 2011 , 285-303
17	Which Electronic Structure Method for The Study of Defects: A Commentary 2011 , 359-379
16	Calculation of Semiconductor Band Structures and Defects by the Screened Exchange Density Functional 2011 , 79-96
15	Electronic Properties of Interfaces and Defects from Many-Body Perturbation Theory: Recent Developments and Applications 2011 , 33-60
14	Accuracy of Quantum Monte Carlo Methods for Point Defects in Solids 2011 , 17-31
13	Novel configuration of Mg-H complexes in GaN. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 693, 339
12	Room-Temperature Continuous-Wave Operation of InGaN Multiple Quantum Well Laser Diodes with an Asymmetric Waveguide Structure. <i>Physica Status Solidi A</i> , 1999 , 176, 49-52
11	Self-Compensation and Doping Problems in ZnSe. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 242, 311
10	First-Principles Investigations of Acceptors in ZnSe. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 242, 349
9	Atomic Structure of CaSi2/Si Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 159, 115
8	Electronic Structure and Hyperfine Parameters for Hydrogen and Muonium in Silicon. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 163, 419

LIST OF PUBLICATIONS

- Theory of Hydrogen Reactions in Silicon. *Materials Research Society Symposia Proceedings*, **1987**, 104, 253
- Enhanced and Retarded Diffusion of Shallow Impurities in Silicon. *Materials Research Society Symposia Proceedings*, **1988**, 141, 243
- Controlling the conductivity of wide-band-gap semiconductors. *Springer Proceedings in Physics*, O.2 O.2
- First-Principles Calculations 1. Springer Series in Materials Science, **2020**, 309-328
- Theoretical aspects of hydrogen in crystalline semiconductors **1991**, 21-32
- 2 Doping limits in ZnSe **1993**, 118-127
- Nanosession: Advanced Spectroscopy and Scattering123-132