Kung-Hui Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4412471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Desulfonation and defluorination of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) by Rhodococcus jostii RHA1: Carbon and sulfur sources, enzymes, and pathways. Journal of Hazardous Materials, 2022, 423, 127052.	12.4	27
2	Fate and Transformation of 6:2 Fluorotelomer Sulfonic Acid Affected by Plant, Nutrient, Bioaugmentation, and Soil Microbiome Interactions. Environmental Science & Technology, 2022, 56, 10721-10731.	10.0	12
3	Dual-function oleaginous biocatalysts for non-sterile cultivation and solvent-free biolipid bioextraction to reduce biolipid-based biofuel production costs. Science of the Total Environment, 2021, 758, 143969.	8.0	2
4	Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. Journal of Hazardous Materials, 2021, 411, 124953.	12.4	10
5	Accumulation and phytotoxicity of perfluorooctanoic acid and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate in Arabidopsis thaliana and Nicotiana benthamiana. Environmental Pollution, 2020, 259, 113817.	7.5	28
6	A Novel Recirculating Aquaculture System for Sustainable Aquaculture: Enabling Wastewater Reuse and Conversion of Waste-to-Immune-Stimulating Fish Feed. ACS Sustainable Chemistry and Engineering, 2020, 8, 18094-18105.	6.7	17
7	From Organic Wastes to Bioplastics: Feasibility of Nonsterile Poly(3-hydroxybutyrate) Production by <i>Zobellella denitrificans</i> ZD1. ACS Omega, 2020, 5, 24158-24168.	3.5	14
8	Recent advances in production and extraction of bacterial lipids for biofuel production. Science of the Total Environment, 2020, 734, 139420.	8.0	34
9	Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes. Science of the Total Environment, 2019, 647, 806-813.	8.0	27
10	Analysis of Zobellella denitrificans ZD1 draft genome: Genes and gene clusters responsible for high polyhydroxybutyrate (PHB) production from glycerol under saline conditions and its CRISPR-Cas system. PLoS ONE, 2019, 14, e0222143.	2.5	9
11	Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. Biodegradation, 2019, 30, 173-190.	3.0	14
12	Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Science of the Total Environment, 2019, 649, 1189-1197.	8.0	64
13	Metabolites Involved in Aerobic Degradation of the A and B Rings of Estrogen. Applied and Environmental Microbiology, 2019, 85, .	3.1	37
14	Characterization of a Novel Tectivirus Phage Toil and Its Potential as an Agent for Biolipid Extraction. Scientific Reports, 2018, 8, 1062.	3.3	18
15	Reusable Functionalized Hydrogel Sorbents for Removing Long- and Short-Chain Perfluoroalkyl Acids (PFAAs) and GenX from Aqueous Solution. ACS Omega, 2018, 3, 17447-17455.	3.5	64
16	Photodegradation of fluorotelomer carboxylic 5:3 acid and perfluorooctanoic acid using zinc oxide. Environmental Pollution, 2018, 243, 637-644.	7.5	20
17	Biochemical Mechanisms and Catabolic Enzymes Involved in Bacterial Estrogen Degradation Pathways. Cell Chemical Biology, 2017, 24, 712-724.e7.	5.2	96
18	Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria. Chemosphere, 2017, 168, 1494-1497.	8.2	18

Кимс-Ниі Сни

#	Article	IF	CITATIONS
19	Supported gold clusters as effective and reusable photocatalysts for the abatement of endocrine-disrupting chemicals under visible light. Journal of Catalysis, 2017, 354, 1-12.	6.2	37
20	Draft Genome Sequence of Zobellella denitrificans ZD1 (JCM 13380), a Salt-Tolerant Denitrifying Bacterium Capable of Producing Poly(3-Hydroxybutyrate). Genome Announcements, 2017, 5, .	0.8	4
21	Fabrication of Bacteria Environment Cubes with Dry Lift-Off Fabrication Process for Enhanced Nitrification. PLoS ONE, 2016, 11, e0165839.	2.5	9
22	Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation. Science of the Total Environment, 2016, 569-570, 1098-1106.	8.0	13
23	Phage-based extraction of polyhydroxybutyrate (PHB) produced from synthetic crude glycerol. Science of the Total Environment, 2016, 557-558, 317-321.	8.0	25
24	Biotransformation of 6:2 polyfluoroalkyl phosphates (6:2 PAPs): Effects of degradative bacteria and co-substrates. Journal of Hazardous Materials, 2016, 320, 479-486.	12.4	31
25	Engineering artificial communities for enhanced FTOH degradation. Science of the Total Environment, 2016, 572, 935-942.	8.0	24
26	Removal of triclosan in nitrifying activated sludge: Effects of ammonia amendment and bioaugmentation. Chemosphere, 2015, 125, 9-15.	8.2	21
27	Biodegradation of 1,4-dioxane: Effects of enzyme inducers and trichloroethylene. Science of the Total Environment, 2015, 520, 154-159.	8.0	73
28	Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions. Journal of Hazardous Materials, 2015, 297, 42-51.	12.4	19
29	Abundances of triclosan-degrading microorganisms in activated sludge systems. Environmental Engineering Research, 2015, 20, 105-109.	2.5	4
30	Comparing Bioretention Designs With and Without an Internal Water Storage Layer for Treating Highway Runoff. Water Environment Research, 2014, 86, 387-397.	2.7	32
31	6:2 Fluorotelomer alcohol (6:2 FTOH) biodegradation by multiple microbial species under different physiological conditions. Applied Microbiology and Biotechnology, 2014, 98, 1831-1840.	3.6	71
32	Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. Biodegradation, 2014, 25, 55-65.	3.0	40
33	Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresource Technology, 2014, 161, 162-170.	9.6	50
34	Microbial degradation of steroidal estrogens. Chemosphere, 2013, 91, 1225-1235.	8.2	162
35	Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. Chemosphere, 2013, 93, 1904-1911.	8.2	50
36	Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater. Environmental Pollution, 2013, 178, 350-360.	7.5	31

Кимс-Ниі Сни

#	Article	IF	CITATIONS
37	Biodegradation of triclosan by a wastewater microorganism. Water Research, 2012, 46, 4226-4234.	11.3	139
38	Biodefluorination and biotransformation of fluorotelomer alcohols by two alkaneâ€degrading <i>Pseudomonas</i> strains. Biotechnology and Bioengineering, 2012, 109, 3041-3048.	3.3	75
39	Bioretention for stormwater quality improvement in Texas: Removal effectiveness of Escherichia coli. Separation and Purification Technology, 2012, 84, 120-124.	7.9	45
40	Application of a Schottky barrier to dye-sensitized solar cells (DSSCs) with multilayer thin films of photoelectrodes. Journal of Alloys and Compounds, 2011, 509, S486-S489.	5.5	9
41	Preparation and Characterization of Anthocyanin Dye and Counter Electrode Thin Film with Carbon Nanotubes for Dye-Sensitized Solar Cells. Materials Transactions, 2011, 52, 1977-1982.	1.2	8
42	Integration of CuO thin films and dye-sensitized solar cells for thermoelectric generators. Current Applied Physics, 2011, 11, S19-S22.	2.4	44
43	Effects of solids retention time on the performance of bioreactors bioaugmented with a 17β-estradiol-utilizing bacterium, Sphingomonas strain KC8. Chemosphere, 2011, 84, 227-233.	8.2	21
44	Molecular quantification of virulence gene-containing Aeromonas in water samples collected from different drinking water treatment processes. Environmental Monitoring and Assessment, 2011, 176, 225-238.	2.7	5
45	Genome Sequence of the 17β-Estradiol-Utilizing Bacterium Sphingomonas Strain KC8. Journal of Bacteriology, 2011, 193, 4266-4267.	2.2	15
46	Assessing Performance of Bioretention Boxes in Hot and Semiarid Regions. Transportation Research Record, 2011, 2262, 155-163.	1.9	11
47	A 17β-Estradiol-utilizing Bacterium, <i>Sphingomonas</i> Strain KC8: Part I - Characterization and Abundance in Wastewater Treatment Plants. Environmental Science & Technology, 2010, 44, 4943-4950.	10.0	62
48	ldentification of Hexahydro-1,3,5-trinitro-1,3,5-triazine-Degrading Microorganisms via ¹⁵ N-Stable Isotope Probing. Environmental Science & Technology, 2009, 43, 2505-2511.	10.0	63
49	Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in east Tennessee, USA. Chemosphere, 2009, 75, 1281-1286.	8.2	121
50	Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere, 2009, 77, 1084-1089.	8.2	232
51	Development and Application of Real-Time PCR Assays for Quantifying Total and Aerolysin Gene-Containing <i>Aeromonas</i> in Source, Intermediate, and Finished Drinking Water. Environmental Science & Technology, 2008, 42, 1191-1200.	10.0	18
52	17β-Estradiol-Degrading Bacteria Isolated from Activated Sludge. Environmental Science & Technology, 2007, 41, 486-492.	10.0	213
53	Properties of an optical multipass surface plasmon resonance technique. Applied Physics Letters, 2006, 89, 071101.	3.3	5
54	Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochimica Et Cosmochimica Acta, 2006, 70, 1739-1752.	3.9	175

Кимс-Ниі Сни

#	Article	IF	CITATIONS
55	Quantitative Molecular Assay for Fingerprinting Microbial Communities of Wastewater and Estrogen-Degrading Consortia. Applied and Environmental Microbiology, 2005, 71, 1433-1444.	3.1	69
56	A Quantitative Assay for Linking Microbial Community Function and Structure of a Naphthalene-Degrading Microbial Consortium. Environmental Science & Technology, 2005, 39, 9611-9619.	10.0	55
57	Stable Carbon Isotope Fractionation during Aerobic Biodegradation of Chlorinated Ethenes. Environmental Science & Technology, 2004, 38, 3126-3130.	10.0	65
58	MTBE and Other Oxygenates: Environmental Sources, Analysis, Occurrence, and Treatment. Environmental Engineering Science, 2003, 20, 433-447.	1.6	86
59	Treatment of Chlorinated Solvents by Nitrogen-Fixing and Nitrate-Supplied Methane Oxidizers in Columns Packed with Unsaturated Porous Media. Environmental Science & Technology, 2000, 34, 1784-1793.	10.0	13
60	Evaluation of Toxic Effects of Aeration and Trichloroethylene Oxidation on Methanotrophic Bacteria Grown with Different Nitrogen Sources. Applied and Environmental Microbiology, 1999, 65, 766-772.	3.1	33
61	Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria. Applied and Environmental Microbiology, 1998, 64, 3451-3457.	3.1	58
62	Trichloroethylene degradation by methane-oxidizing cultures grown with various nitrogen sources. Water Environment Research, 1996, 68, 76-82.	2.7	43