Kung-Hui Chu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4412471/kung-hui-chu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61
papers

2,240
citations

27
h-index

46
g-index

63
ext. papers

2,550
ext. citations

7.3
avg, IF

5.23
L-index

#	Paper	IF	Citations
61	Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. <i>Chemosphere</i> , 2009 , 77, 1084-9	8.4	191
60	17beta-estradiol-degrading bacteria isolated from activated sludge. <i>Environmental Science & Environmental Science & Technology</i> , 2007 , 41, 486-92	10.3	179
59	Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. <i>Geochimica Et Cosmochimica Acta</i> , 2006 , 70, 1739-1752	5.5	154
58	Microbial degradation of steroidal estrogens. <i>Chemosphere</i> , 2013 , 91, 1225-35	8.4	125
57	Biodegradation of triclosan by a wastewater microorganism. Water Research, 2012, 46, 4226-34	12.5	109
56	Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in east Tennessee, USA. <i>Chemosphere</i> , 2009 , 75, 1281-6	8.4	104
55	MTBE and Other Oxygenates: Environmental Sources, Analysis, Occurrence, and Treatment. <i>Environmental Engineering Science</i> , 2003 , 20, 433-447	2	82
54	Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 1433-44	4.8	62
53	Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	61
52	Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes. <i>Environmental Science & Environmental Science & Environment</i>	10.3	61
51	A 17beta-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I - characterization and abundance in wastewater treatment plants. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	56
50	Biochemical Mechanisms and Catabolic Enzymes Involved in Bacterial Estrogen Degradation Pathways. <i>Cell Chemical Biology</i> , 2017 , 24, 712-724.e7	8.2	55
49	Biodefluorination and biotransformation of fluorotelomer alcohols by two alkane-degrading Pseudomonas strains. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 3041-8	4.9	54
48	Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene. <i>Science of the Total Environment</i> , 2015 , 520, 154-9	10.2	51
47	A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. <i>Environmental Science & Environmental Science & </i>	9 ^{10.3}	51
46	Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates. <i>Bioresource Technology</i> , 2014 , 161, 162-70	11	46
45	Effect of nitrogen source on growth and trichloroethylene degradation by methane-oxidizing bacteria. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 3451-7	4.8	46

(2016-2019)

44	Effectiveness of zinc oxide-assisted photocatalysis for concerned constituents in reclaimed wastewater: 1,4-Dioxane, trihalomethanes, antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). <i>Science of the Total Environment</i> , 2019 , 649, 1189-1197	10.2	44
43	Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. <i>Chemosphere</i> , 2013 , 93, 1904-11	8.4	42
42	6:2 Fluorotelomer alcohol (6:2 FTOH) biodegradation by multiple microbial species under different physiological conditions. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 1831-40	5.7	40
41	Integration of CuO thin films and dye-sensitized solar cells for thermoelectric generators. <i>Current Applied Physics</i> , 2011 , 11, S19-S22	2.6	37
40	Bioretention for stormwater quality improvement in Texas: Removal effectiveness of Escherichia coli. <i>Separation and Purification Technology</i> , 2012 , 84, 120-124	8.3	36
39	Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. <i>Biodegradation</i> , 2014 , 25, 55-65	4.1	36
38	Trichloroethylene degradation by methane-oxidizing cultures grown with various nitrogen sources. Water Environment Research, 1996 , 68, 76-82	2.8	34
37	Supported gold clusters as effective and reusable photocatalysts for the abatement of endocrine-disrupting chemicals under visible light. <i>Journal of Catalysis</i> , 2017 , 354, 1-12	7.3	30
36	Reusable Functionalized Hydrogel Sorbents for Removing Long- and Short-Chain Perfluoroalkyl Acids (PFAAs) and GenX from Aqueous Solution. <i>ACS Omega</i> , 2018 , 3, 17447-17455	3.9	30
35	Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater. <i>Environmental Pollution</i> , 2013 , 178, 350-60	9.3	28
34	Evaluation of toxic effects of aeration and trichloroethylene oxidation on methanotrophic bacteria grown with different nitrogen sources. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 766-72	4.8	26
33	Comparing bioretention designs with and without an internal water storage layer for treating highway runoff. <i>Water Environment Research</i> , 2014 , 86, 387-97	2.8	25
32	Metabolites Involved in Aerobic Degradation of the A and B Rings of Estrogen. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	25
31	Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes. <i>Science of the Total Environment</i> , 2019 , 647, 806-813	10.2	23
30	Recent advances in production and extraction of bacterial lipids for biofuel production. <i>Science of the Total Environment</i> , 2020 , 734, 139420	10.2	23
29	Phage-based extraction of polyhydroxybutyrate (PHB) produced from synthetic crude glycerol. <i>Science of the Total Environment</i> , 2016 , 557-558, 317-21	10.2	21
28	Effects of solids retention time on the performance of bioreactors bioaugmented with a 17Eestradiol-utilizing bacterium, Sphingomonas strain KC8. <i>Chemosphere</i> , 2011 , 84, 227-33	8.4	18
27	Biotransformation of 6:2 polyfluoroalkyl phosphates (6:2 PAPs): Effects of degradative bacteria and co-substrates. <i>Journal of Hazardous Materials</i> , 2016 , 320, 479-486	12.8	16

26	Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions. <i>Journal of Hazardous Materials</i> , 2015 , 297, 42-51	12.8	15
25	Characterization of a Novel Tectivirus Phage Toil and Its Potential as an Agent for Biolipid Extraction. <i>Scientific Reports</i> , 2018 , 8, 1062	4.9	15
24	Removal of triclosan in nitrifying activated sludge: effects of ammonia amendment and bioaugmentation. <i>Chemosphere</i> , 2015 , 125, 9-15	8.4	15
23	Development and application of real-time PCR assays for quantifying total and aerolysin gene-containing aeromonas in source, intermediate, and finished drinking water. <i>Environmental Science & Environmental Science & Envir</i>	10.3	15
22	Engineering artificial communities for enhanced FTOH degradation. <i>Science of the Total Environment</i> , 2016 , 572, 935-942	10.2	15
21	Genome sequence of the 17Eestradiol-utilizing bacterium Sphingomonas strain KC8. <i>Journal of Bacteriology</i> , 2011 , 193, 4266-7	3.5	14
20	Photodegradation of fluorotelomer carboxylic 5:3 acid and perfluorooctanoic acid using zinc oxide. <i>Environmental Pollution</i> , 2018 , 243, 637-644	9.3	12
19	Treatment of Chlorinated Solvents by Nitrogen-Fixing and Nitrate-Supplied Methane Oxidizers in Columns Packed with Unsaturated Porous Media. <i>Environmental Science & Environmental Science & Environm</i>	10.3	11
18	Cometabolic biodegradation of 1,2,3-trichloropropane by propane-oxidizing bacteria. <i>Chemosphere</i> , 2017 , 168, 1494-1497	8.4	10
17	Accumulation and phytotoxicity of perfluorooctanoic acid and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate in Arabidopsis thaliana and Nicotiana benthamiana. <i>Environmental Pollution</i> , 2020 , 259, 113817	9.3	10
16	Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation. <i>Science of the Total Environment</i> , 2016 , 569-570, 1098-1106	10.2	10
15	Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. <i>Biodegradation</i> , 2019 , 30, 173-190	4.1	9
14	Assessing Performance of Bioretention Boxes in Hot and Semiarid Regions: Highway Application Pilot Study. <i>Transportation Research Record</i> , 2011 , 2262, 155-163	1.7	9
13	Fabrication of Bacteria Environment Cubes with Dry Lift-Off Fabrication Process for Enhanced Nitrification. <i>PLoS ONE</i> , 2016 , 11, e0165839	3.7	9
12	Application of a Schottky barrier to dye-sensitized solar cells (DSSCs) with multilayer thin films of photoelectrodes. <i>Journal of Alloys and Compounds</i> , 2011 , 509, S486-S489	5.7	8
11	A Novel Recirculating Aquaculture System for Sustainable Aquaculture: Enabling Wastewater Reuse and Conversion of Waste-to-Immune-Stimulating Fish Feed. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 18094-18105	8.3	6
10	Preparation and Characterization of Anthocyanin Dye and Counter Electrode Thin Film with Carbon Nanotubes for Dye-Sensitized Solar Cells. <i>Materials Transactions</i> , 2011 , 52, 1977-1982	1.3	5
9	From Organic Wastes to Bioplastics: Feasibility of Nonsterile Poly(3-hydroxybutyrate) Production by ZD1. <i>ACS Omega</i> , 2020 , 5, 24158-24168	3.9	5

LIST OF PUBLICATIONS

8	Analysis of Zobellella denitrificans ZD1 draft genome: Genes and gene clusters responsible for high polyhydroxybutyrate (PHB) production from glycerol under saline conditions and its CRISPR-Cas system. <i>PLoS ONE</i> , 2019 , 14, e0222143	3.7	4
7	Properties of an optical multipass surface plasmon resonance technique. <i>Applied Physics Letters</i> , 2006 , 89, 071101	3.4	4
6	Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. <i>Journal of Hazardous Materials</i> , 2021 , 411, 124953	12.8	4
5	Draft Genome Sequence of ZD1 (JCM 13380), a Salt-Tolerant Denitrifying Bacterium Capable of Producing Poly(3-Hydroxybutyrate). <i>Genome Announcements</i> , 2017 , 5,		3
4	Molecular quantification of virulence gene-containing Aeromonas in water samples collected from different drinking water treatment processes. <i>Environmental Monitoring and Assessment</i> , 2011 , 176, 225	38	3
3	Abundances of triclosan-degrading microorganisms in activated sludge systems. <i>Environmental Engineering Research</i> , 2015 , 20, 105-109	3.6	3
2	Desulfonation and defluorination of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) by Rhodococcus jostii RHA1: Carbon and sulfur sources, enzymes, and pathways. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127052	12.8	2
1	Dual-function oleaginous biocatalysts for non-sterile cultivation and solvent-free biolipid bioextraction to reduce biolipid-based biofuel production costs. <i>Science of the Total Environment</i> , 2021 , 758, 143969	10.2	1